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Introduction

« Many of the goals of the Fermilab neutrino program involve
measuring neutrino oscillations:
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Introduction

An accurate “detector”
physics modeling is
needed for all of these
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Interaction
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Efficiency / Smearing
Function

And the required accuracy is
changing as accelerator-based
oscillation experiments become

systematics dominated
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Introduction

50% CP Violation Sensitivity
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signal normalization

uncertainty equivalent to

nearly doubling exposure ik
time for some figures of merit °

 We will need
unprecedented precision in . :
models of beams, physics, TR R R TR PR
Exposure (kt-MW-years)
and detectors
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DUNE’s physics reach will strongly depend on how low we are able to push

systematic uncertainties, many of which will come from Detector/Beam modeling
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Beam Simulation
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Beam Simulation
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Target

Protons from
Main Injector

* Geant simulations require
corrections to neutrino flux of up
to 40% based on external data

* After correction, flux
uncertainties are ~10%

o(ve) X €(ve) x P (v, — ve)
Neutrino
Flux
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Detector Simulation
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We depend on
Geant modeling of
our detectors to
estimate efficiency
and smearing;

_ extremely important
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Detector Simulation

MINERVA

..........

Modeling of neutrons is one of our biggest challenges to neutrino
reconstruction. They are displaced in space from the rest of the
interaction and typically only deposit a small fraction of their energy ->
a big source of missing energy in neutrino reconstruction

Neutrons are present in all charged-current antineutrino interactions
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Detector Simulation
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Modeling of liquid Argon
Detectors is critical, as
many new LAr detectors
come online.

Important processes for
oscillation physics:
iInelastic interactions/
response of < few GeV
pions, protons, neutrons,
photons, electrons

Kaons also important for
nucleon decay analyses
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Detector Simulation
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LArIAT Data

K- capture candidate

LArIAT Data

Ut — e* decay
candidate

* Sign selection in detectors without a magnetic field is important
 Allows separation of neutrinos and antineutrinos (needed

because observation of differences between neutrino and
antineutrinos is a central physics goal)

* 1+ only decay, with e+ emission of known energy spectrum
« M- capture on nuclei followed by y/n emission (76%) or decay

(24%)

* Capture rate higher in Argon than in lighter elements

Neutrino Experiments
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Detector Simulation

LArIAT data
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* e/y separation also critical for oscillation measurements

* Separates electron neutrino appearance from backgrounds such
as Neutral Current 1° production
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Neutrino Interaction Cross Sections
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* Neutrino interactions are modeled by event
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Systematic Uncertainties

* For neutrino experiments, knowing the level

of inaccuracy of our simulations is as

Important as having accurate simulations
» Detector/beam modeling are significant

sources of uncertainties and must be

propagated to systematic uncertainties on

measured quantities
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This is
frequently
done by
comparing G4
to external
data
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Systematic Uncertainties

energy response / incoming energy
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Or by making dedicated measurements
in a test beam;

Work is often done separately by each
(small) collaboration and makes
moving to new versions of Geant4
difficult
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Liquid Argon Validation Project

« The LAr Validation Project is a first step towards combining the
work of G4 validation across neutrino experiments

» See Fermilab redmine for presentations and write up:

* https://cdcvs.fnal.gov/redmine/projects/liquid-argon-validation-project?
jump=welcome

* The are:
* identify physics processes of particular interest for liquid Argon TPC
experiments.

* Provide a set of tests that can be used to simulate the processes and
establish how well these are described by the Geant4 simulation
(compared to experimental data).

* Provide guidance about how to set up Geant4 in an optimal way
(geometry, physics list, cuts...).

 Collect test results and experimental data in DOSSIER (Database of
scientific simulated and experimental results).
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DoSSIER Database

Database of Scientific Simulation and Experimental Results
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Select Pion Cross Sections in Geant 4 test browser

Nucl.Phys.B76 (1974) , p: 15-28

Allardyce, B.W. etal. link
Nucl.Phys.B62 (1973) , p: 61-85 Cox, C.R.etal. link
Nucl.Phys.A209 (1973) , p: 1-51 Allardyce, B.W. et al. link
Phys.Rev.C14 (1976) , p: 635-638 Carroll, A.S. etal. link

|~ Beampi- energy scan TargetC

Ref: 6,Beam:Nimrod Rutherford/sec. beam,Target.C,
—&— Ref: 4 Beam:Nimrod Rutherford/sec. beam,Target:C.

Results from Geant 4 simulations and
all the experiments where the meta
data (particle, target material energy
range ...) matches the selection are
overlayed automatically.

>
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DoSSIER Database
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Conclusion

18

* Detector (and beam) simulations affect neutrino oscillation

measurements in many ways and are a major source of systematic
uncertainty

* Wide variety of physics processes, from 100 GeV to MeV level are important

Needed accuracy of experiments will increase over the next
decade

* We use G4 physics lists tuned primarily to the needs of LHC

experiments

* This is increasingly leading us to make of G4 to meet
our needs

* This in turns limits our ability to move to new (more accurate) versions of
Geant4
Efforts (e.g. the LAr Validation Project) are beginning to identify areas of

physics modeling need across experiments and quantify uncertainties
In simulations
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Introduction

Typical neutrino event

Outgoing lepton:

Flavor: CC vs. NC, u*vs. u, e
VS. y

Energy: measure

Incoming neutrino:
Flavor unknown
Energy unknown

Mesons:
FSI!
Energy? Identity?

Target nucleus:
Nucleon “sandbags” at Q2
N-N correlations

Outgoing nucleons:
Visible?
Energy?
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