The 30 GeV Dimuon at ALEPH Kenneth Lane, with Lukas Pritchett Boston University

The ALEPH data

The 2HDM model

The two options

The predictions

The fly in the ointment

The ALEPH data

From A. Heister, "Observation of an excess at 30 GeV in the opposite sign di-muon spectra of $Z \rightarrow b\overline{b} + X$ events by the ALEPH detector at LEP", arXiv:1610.06536

opposite-sign $M_{\mu\mu}$ (from arXiv:1610.06536)

same-sign $M_{\mu\mu}$ (from arXiv:1610.06536)

The ALEPH data

From A. Heister, "Observation of an excess at 30 GeV in the opposite sign di-muon spectra of $Z \rightarrow b\overline{b} + X$ events by the ALEPH detector at LEP", arXiv:1610.06536

opposite-sign $M_{\mu\mu}$ <u>NO</u> MC reproduces this excess!

same-sign $M_{\mu\mu}$ (from arXiv:1610.06536)

Signal + background model used to extract signal parameters (from arXiv:1610.06536)

 $32\pm11~{
m events},~{
m significance}~\simeq3\,\sigma$ (from statistical tools)

Signal + background model used to extract signal parameters (from arXiv:1610.06536)

 32 ± 11 events, significance $\simeq 3 \sigma$

Natural width is (1.78 ± 1.14) GeV, IOW, consistent with zero (again, see 1610.06536)

Signal + background model used to extract signal parameters (from arXiv:1610.06536)

 32 ± 11 events, significance $\simeq 3 \sigma$

 $\implies B(Z \to \overline{b}bX(\to \mu^+\mu^-)) = (2.77 \pm 0.95) \times 10^{-4}$

μ^- angular distribution in dimuon rest frame (from arXiv:1610.06536) $\cos heta^*=\widehat{p}_{\mu^-}\cdot\widehat{p}_{\mu^+\mu^-}$

 $M_{\mu^+\mu^-} = 15-50\,{
m GeV}$ excluding signal region

 $M_{\mu^+\mu^-} = (30.40 \pm 3.85)\,{
m GeV}$

The "horns" at $\cos \theta^* \cong \pm 1$ are mostly $b \to c \mu \nu$

There is a weak (~1-sigma) e+e- near 30 GeV.

I'm going to Fuhgeddaboutit.

Finally, inverting the b-tag shows no evidence of a dimuon excess near 30 GeV:

==> <u>Hypothesis</u>: The dimuon excess near 30 GeV is associated with Z-decays and <u>bb</u> production.

The 2HDM model

Impose softly-broken $U(1)_{\phi}$ symmetry: $(Y_{EW} = \frac{1}{2})$

 $egin{aligned} Y_{\phi}(q_{Lk}) &= Y_{\phi}\left(egin{aligned} u_{Lk}\ d_{Lk} \end{array}
ight) = Y_{\phi}(u_{Rk}) = Y_{\phi}(d_{Rk}) = 0\,; & (k=1,2,3) \ Y_{\phi}(L_{Lk}) &= Y_{\phi}\left(egin{aligned}
u_{Lk}\ \ell_{Lk} \end{array}
ight) = rac{1}{2}\,, & Y_{\phi}(\ell_{Rk}) = -rac{1}{2}\,; & (k=1,2) \ \end{array}$

 $Y_{\phi}(L_{L3}) = Y_{\phi}(\ell_{R3}) = 0$.

 $Y_{\phi}(\phi_1) = 0, \ Y_{\phi}(\phi_2) = 1;$

Impose softly-broken $U(1)_{\phi}$ symmetry: $(Y_{EW} = \frac{1}{2})$ $Y_{\phi}(\phi_1) = 0, \ Y_{\phi}(\phi_2) = 1;$

$$egin{aligned} Y_{\phi}(q_{Lk}) &= Y_{\phi}\left(egin{aligned} u_{Lk}\ d_{Lk} \end{array}
ight) = Y_{\phi}(u_{Rk}) = Y_{\phi}(d_{Rk}) = 0\,; & (k=1,2,3) \ Y_{\phi}(L_{Lk}) &= Y_{\phi}\left(egin{aligned}
u_{Lk}\ \ell_{Lk} \end{array}
ight) = rac{1}{2}\,, & Y_{\phi}(\ell_{Rk}) = -rac{1}{2}\,; & (k=1,2) \end{aligned}$$

 $Y_{\phi}(L_{L3}) = Y_{\phi}(\ell_{R3}) = 0$.

Impose softly-broken $U(1)_{\phi}$ symmetry: $(Y_{EW} = \frac{1}{2})$ $Y_{\phi}(\phi_1) = 0, \ Y_{\phi}(\phi_2) = 1;$ $Y_{\phi}(q_{Lk}) = Y_{\phi}\begin{pmatrix} u_{Lk} \\ d_{Lk} \end{pmatrix} = Y_{\phi}(u_{Rk}) = Y_{\phi}(d_{Rk}) = 0; \quad (k = 1, 2, 3)$ $Y_{\phi}(L_{Lk}) = Y_{\phi}\begin{pmatrix} \nu_{Lk} \\ \ell_{Lk} \end{pmatrix} = \frac{1}{2}, \quad Y_{\phi}(\ell_{Rk}) = -\frac{1}{2}; \quad (k = 1, 2)$ $Y_{\phi}(L_{L3}) = Y_{\phi}(\ell_{R3}) = 0.$

to maintain:

• $\phi_{10} \cong H(125)$ with \cong SM couplings

• $\phi_{20}\cong h,\;\phi_{23}\cong\eta_A\; ext{couple to}\;\mu^+\mu^-,\;ar{b}b$ (weakly, thru mixing)

• $\phi_2^{\pm} \cong h^{\pm}$ couple to $\mu^{\pm} \nu_{\mu}$

Impose softly-broken $U(1)_{\phi}$ symmetry: $(Y_{EW}=rac{1}{2})$ $Y_{\phi}(\phi_1) = 0, \ Y_{\phi}(\phi_2) = 1;$ $egin{aligned} Y_{\phi}(q_{Lk}) &= Y_{\phi}\left(egin{aligned} u_{Lk}\ d_{Lk} \end{array}
ight) = Y_{\phi}(u_{Rk}) = Y_{\phi}(d_{Rk}) = 0\,; & (k=1,2,3) \ Y_{\phi}(L_{Lk}) &= Y_{\phi}\left(egin{aligned}
u_{Lk}\ \ell_{Lk} \end{array}
ight) = rac{1}{2}\,, & Y_{\phi}(\ell_{Rk}) = -rac{1}{2}\,; & (k=1,2) \end{aligned}$ $Y_{\phi}(L_{L3}) = Y_{\phi}(\ell_{R3}) = 0$. $V(\phi_1,\phi_2) = -\mu_1^2 \phi_1^\dagger \phi_1 - \mu_2^2 \phi_2^\dagger \phi_2 - \mu_3^2 (\phi_1^\dagger \phi_2 + \phi_2^\dagger \phi_1) + \lambda_1 (\phi_1^\dagger \phi_1)^2$ $+\lambda_2(\phi_2^{\dagger}\phi_2)^2+2\lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2)+2\lambda_4(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1)\,.$

Impose softly-broken $U(1)_{\phi}$ symmetry: $(Y_{EW} = \frac{1}{2})$ $Y_{\phi}(\phi_1) = 0, \ Y_{\phi}(\phi_2) = 1;$ $Y_{\phi}(q_{Lk}) = Y_{\phi}\begin{pmatrix} u_{Lk} \\ d_{Lk} \end{pmatrix} = Y_{\phi}(u_{Rk}) = Y_{\phi}(d_{Rk}) = 0; \quad (k = 1, 2, 3)$ $Y_{\phi}(L_{Lk}) = Y_{\phi}\begin{pmatrix} \nu_{Lk} \\ \ell_{Lk} \end{pmatrix} = \frac{1}{2}, \quad Y_{\phi}(\ell_{Rk}) = -\frac{1}{2}; \quad (k = 1, 2)$ $Y_{\phi}(L_{L3}) = Y_{\phi}(\ell_{R3}) = 0.$

 $egin{aligned} V(\phi_1,\phi_2) &= -\mu_1^2\,\phi_1^\dagger\phi_1 - \mu_2^2\,\phi_2^\dagger\phi_2 - \mu_3^2\,(\phi_1^\dagger\phi_2 + \phi_2^\dagger\phi_1) + \lambda_1(\phi_1^\dagger\phi_1)^2 \ &+ \lambda_2(\phi_2^\dagger\phi_2)^2 + 2\lambda_3(\phi_1^\dagger\phi_1)(\phi_2^\dagger\phi_2) + 2\lambda_4(\phi_1^\dagger\phi_2)(\phi_2^\dagger\phi_1)\,. \end{aligned}$

 $\langle \phi_i
angle_0 = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ v_i \end{array}
ight) \qquad ext{for } \mu^2_{1,2,3} > 0 \,, \, \, \lambda_{1,2} > 0 \,, \, \, \lambda_{3,4} \,\, ext{real.}$

The 2HDM masses

<u>CP-even:</u>

$$M^2(\phi_{10},\phi_{20}) = egin{pmatrix} \mu_3^2\,v_2/v_1+2\lambda_1v_1^2 & -\mu_3^2+2(\lambda_3+\lambda_4)v_1v_2\ -\mu_3^2+2(\lambda_3+\lambda_4)v_1v_2 & \mu_3^2\,v_1/v_2+2\lambda_2v_2^2 \end{pmatrix}$$

 $H = \phi_{10} \cos \alpha + \phi_{20} \sin \alpha$, $h = -\phi_{10} \sin \alpha + \phi_{20} \cos \alpha$,

$$ext{ where } an 2lpha = rac{2(2(\lambda_3+\lambda_4)v_1v_2-\mu_3^2)}{\mu_3^2(v_2/v_1-v_1/v_2)+2(\lambda_1v_1^2-\lambda_2v_2^2)}\,;$$

<u>CP-even:</u>

$$M^2(\phi_{10},\phi_{20}) = egin{pmatrix} \mu_3^2 v_2/v_1 + 2\lambda_1 v_1^2 & -\mu_3^2 + 2(\lambda_3 + \lambda_4) v_1 v_2 \ -\mu_3^2 + 2(\lambda_3 + \lambda_4) v_1 v_2 & \mu_3^2 v_1/v_2 + 2\lambda_2 v_2^2 \end{bmatrix}$$

 $H = \phi_{10} \cos \alpha + \phi_{20} \sin \alpha$, $h = -\phi_{10} \sin \alpha + \phi_{20} \cos \alpha$,

$$ext{ where } an 2lpha = rac{2(2(\lambda_3+\lambda_4)v_1v_2-\mu_3^2)}{\mu_3^2(v_2/v_1-v_1/v_2)+2(\lambda_1v_1^2-\lambda_2v_2^2)}\,;$$

$$M^2(H,h) = rac{1}{2v_1v_2} iggl\{ \mu_3^2 v^2 + 2(\lambda_1 v_1^2 + \lambda_2 v_2^2) v_1 v_2$$

$$\pm \left[\mu_3^2 v^2 + 2 (\lambda_1 v_1^2 + \lambda_2 v_2^2) v_1 v_2)
ight]^2 - 8 \left[\mu_3^2 (\lambda_1 v_1^4 + \lambda_2 v_2^4) v_1 v_2
ight]^2$$

 $\left. +2\lambda_1\lambda_2v_1^4v_2^4+2\mu_3^2(\lambda_3+\lambda_4)v_1^3v_2^3-2(\lambda_3+\lambda_4)^2v_1^4v_2^4\right] \right|^{\frac{1}{2}} \right\}.$

CP-even:

$$M^2(\phi_{10},\phi_{20}) = egin{pmatrix} \mu_3^2 v_2/v_1 + 2\lambda_1 v_1^2 & -\mu_3^2 + 2(\lambda_3 + \lambda_4) v_1 v_2 \ -\mu_3^2 + 2(\lambda_3 + \lambda_4) v_1 v_2 & \mu_3^2 v_1/v_2 + 2\lambda_2 v_2^2 \end{bmatrix}$$

 $H = \phi_{10} \cos \alpha + \phi_{20} \sin \alpha$, $h = -\phi_{10} \sin \alpha + \phi_{20} \cos \alpha$,

$$ext{ where } an 2lpha = rac{2(2(\lambda_3+\lambda_4)v_1v_2-\mu_3^2)}{\mu_3^2(v_2/v_1-v_1/v_2)+2(\lambda_1v_1^2-\lambda_2v_2^2)}\,,$$

 $M^2(H,h) = rac{1}{2v_1v_2} iggl\{ \mu_3^2 v^2 + 2(\lambda_1 v_1^2 + \lambda_2 v_2^2) v_1 v_2 iggr\}$

 $\pm \left[\begin{bmatrix} \mu_3^2 v^2 + 2(\lambda_1 v_1^2 + \lambda_2 v_2^2) v_1 v_2 \end{bmatrix} \right]^2 - 8 \begin{bmatrix} \mu_3^2 (\lambda_1 v_1^4 + \lambda_2 v_2^4) v_1 v_2 \\ A a ann g g g h h h \\ + 2\lambda_1 \lambda_2 v_1^4 v_2^4 + 2\mu_3^2 (\lambda_3 + \lambda_4) v_1^3 v_2 - 2(\lambda_3 + \lambda_4)^2 v_1^4 v_2^4 \end{bmatrix} \right]^{\frac{1}{2}} \right\}.$

CP-odd:

 $\pi_A = \phi_{13} \cos \beta + \phi_{23} \sin \beta$, $\eta_A = \phi_{13} \sin \beta - \phi_{23} \cos \beta$,

where $\tan \beta = \frac{v_2}{v_1}$; $M_{\pi_A}^2 = 0$, $M_{\eta_A}^2 = \mu_3^2 \frac{v^2}{v_1 v_2}$.

CP-odd:

 $\pi_A = \phi_{13} \cos \beta + \phi_{23} \sin \beta$, $\eta_A = \phi_{13} \sin \beta - \phi_{23} \cos \beta$,

where
$$\tan \beta = \frac{v_2}{v_1};$$

 $M_{\pi_A}^2 = 0, \quad M_{\eta_A}^2 = \mu_3^2 \frac{v^2}{v_1 v_2}.$

Charged:

 $egin{aligned} \pi^\pm &= \phi_1^\pm \coseta + \phi_2^\pm \sineta\,, \quad h^\pm &= \phi_1^\pm \sineta - \phi_2^\pm \coseta\,, \ M_{\pi^\pm}^2 &= 0\,, \quad M_{h^\pm}^2 &= \left(rac{\mu_3^2}{v_1v_2} - \lambda_4
ight) v^2\,. \end{aligned}$

The 2HDM interactions

Leptons:

 $\mathcal{L}_{Yl} = -\sum_{\ell_k = e, \mu} \frac{m_{\ell_k}}{v \sin \beta} \, \bar{\ell}_k \left[v \sin \beta + H \sin \alpha + h \cos \alpha - i \eta_A \cos \beta \gamma_5 \right] \, \ell_k$ $-\frac{m_{\tau}}{v\cos\beta}\bar{\tau}\left[v\cos\beta+H\cos\alpha-h\sin\alpha+i\eta_{A}\sin\beta\gamma_{5}\right]\tau$ $+h^+\left[\sum_{m{k}=e,\mu}rac{\sqrt{2}m_{\ell_k}\coteta}{v}ar{
u_{k_L}}\ell_{kR}-rac{\sqrt{2}m_ au\taneta}{v}ar{
u_{ au L}} au_R
ight]+ ext{h.c.}$

The 2HDM interactions

Leptons:

 $\mathcal{L}_{Yl} = -\sum_{\ell_k = e, \mu} \frac{m_{\ell_k}}{v \sin \beta} \bar{\ell}_k \left[v \sin \beta + H \sin \alpha + h \cos \alpha - i \eta_A \cos \beta \gamma_5 \right] \ell_k$ $- \frac{m_\tau}{v \cos \beta} \bar{\tau} \left[v \cos \beta + H \cos \alpha - h \sin \alpha + i \eta_A \sin \beta \gamma_5 \right] \tau$ $+ h^+ \left[\sum_{k = e, \mu} \frac{\sqrt{2}m_{\ell_k} \cot \beta}{v} \bar{\nu}_{k_L} \ell_{kR} - \frac{\sqrt{2}m_\tau \tan \beta}{v} \bar{\nu}_{\tau L} \tau_R \right] + \text{h.c.}$

N.B.: These interactions induce <u>no</u> detectable charged-lepton flavor violation!

Quarks:

$$\implies \frac{B(\eta_A \to \bar{b}b)}{B(\eta_A \to \mu^+ \mu^-)} = \frac{3m_b^2 \tan^4 \beta}{m_\mu^2}$$

EW bosons:

$$\mathcal{L}_{EW} = \frac{e}{\sin 2\theta_W} \left[(h\cos(\beta - \alpha) - H\sin(\beta - \alpha)) \overleftrightarrow{\partial_{\mu}} \eta_A \right] Z^{\mu} + \frac{e}{2\sin\theta_W} \left[(\eta_A \pm ih\cos(\beta - \alpha) \mp iH\sin(\beta - \alpha)) \overleftrightarrow{\partial_{\mu}} h^{\pm} \right] W^{\mp \mu} + \left[\frac{2e^2}{\sin^2 2\theta_W} Z^{\mu} Z_{\mu} + \frac{e^2}{\sin^2 \theta_W} W^{+\mu} W_{\mu}^{-} \right] \left[H\cos(\beta - \alpha) + h\sin(\beta - \alpha) \right] .$$

The two options

To be close to SM and consistent with LHC H-data require:

• small α for weak $\phi_{10} - \phi_{20}$ mixing

• small β for weak $\pi_A - \eta_A$ mixing

So...

- $ullet v^2\cong v_1^2\gg v_2^2$
- $(\mu_3^2 2\lambda_1 v_1 v_2)^2 \gg 8(\lambda_1 \lambda_2 (\lambda_3 + \lambda_4)^2)v_2^4$

The two options

To be close to SM and consistent with LHC H-data require:

- small α for weak $\phi_{10} \phi_{20}$ mixing
- small β for weak $\pi_A \eta_A$ mixing •

 $\implies M^{2}(H,h) \cong \begin{cases} \max(2\lambda_{1}v_{1}^{2}, \, \mu_{3}^{2}v^{2}/v_{1}v_{2}) \\ \min(2\lambda_{1}v_{1}^{2}, \, \mu_{3}^{2}v^{2}/v_{1}v_{2}) \end{cases}$

i.e., either

(1) $M_H^2 \cong 2\lambda_1 v^2$ and $M_h^2 \cong M_{\eta_A}^2 \cong \mu_3^2 v^2 / v_1 v_2$ (2) $M_H^2 \cong M_{\eta_A}^2 \cong \mu_3^2 v^2 / v_1 v_2$ and $M_h^2 \cong 2\lambda_1 v^2$ or

Option 1:

 $Z \to h \eta_A \to \mu^+ \mu^- \, \overline{b} b$ plus "Higgsstrahlung" :

 $Z o Z^* h ext{ with } Z^* o ar{b}b, ext{ } h o \mu^+ \mu^- \ ext{or } Z o ar{b}b ext{ with } b(ar{b}) o b(ar{b}) + h/\eta_A o b(ar{b}) \mu^+ \mu^-$

Option 2:

Higgsstrahlung only, with $\mathcal{O}(10^{-10})$ contribution to $Z \rightarrow \bar{b}b + \text{dimuon}$.

So, only option 1 is available:

 $B(Z o h\eta_A o ar{b}b\mu^+\mu^-) \cong B(Z o h\eta_A) \left[B(h o ar{b}b)B(\eta_A o \mu^+\mu^-) + (h \leftrightarrow \eta_A)
ight]$

where

$$B(Z
ightarrow h\eta_A) = rac{2lpha_{EM} p^3}{3M_Z^2 \sin^2 2 heta_W \Gamma_Z} \cos^2(eta-lpha)$$

 $= 0.0141 \cos^2(eta - lpha) ext{ for } M_H = M_{\eta_A} = 30 ext{ GeV}$

So, only option 1 is available:

 $B(Z
ightarrow h\eta_A
ightarrow ar{b}b\mu^+\mu^-) \cong B(Z
ightarrow h\eta_A) \left[B(h
ightarrow ar{b}b) B(\eta_A
ightarrow \mu^+\mu^-) + (h
ightarrow \eta_A)
ight]$

where

 $B(Z
ightarrow h\eta_A) = rac{2lpha_{EM}\,p^3}{3M_Z^2\sin^22 heta_W\Gamma_Z}\cos^2(eta-lpha)$

 $M=0.0141\cos^2(eta-lpha)~{
m for}~M_H=M_{\eta_A}=30\,{
m GeV}$

Wait for it!

But... $H \rightarrow hh$, $\eta_A \eta_A$, h^+h^- ??

But... $H \rightarrow hh$, $\eta_A \eta_A$, $h^+ h^-$??

• Require $\lambda_4 < 0$ so that $M_{h^{\pm}} > \frac{1}{2}M_H \cong 63 \text{ GeV or}$ $M_{h^{\pm}} > (M_{\tilde{\mu}^{\pm}})_{\text{limit}} \cong 95 \text{ GeV}$

• Require $|\lambda_3 + \lambda_4| < 5.44 \times 10^{-3}$ so that $\Gamma(H \to hh), \ \Gamma(H \to \eta_A \eta_A) < \frac{1}{2} \,\mathrm{MeV}$

But... $H \rightarrow hh$, $\eta_A \eta_A$, $h^+ h^-$??

• Require $\lambda_4 < 0$ so that $M_{h^{\pm}} > \frac{1}{2}M_H \cong 63 \,\mathrm{GeV}$ or $M_{h^{\pm}} > (M_{\tilde{\mu}^{\pm}})_{\mathrm{limit}} \cong 95 \,\mathrm{GeV}$

• Require $|\lambda_3 + \lambda_4| < 5.44 \times 10^{-3}$ so that $\Gamma(H \to hh)$, $\Gamma(H \to \eta_A \eta_A) < \frac{1}{2} \text{ MeV}$ (Yes, it's fine tuning, but who cares?)

The predictions

Tables' inputs:

• $M_{h,\eta_A} = 30\,{
m GeV},\; M_H = 125\,{
m GeV},\; M_{h^\pm} = 65\,{
m GeV}$

•
$$\lambda_4 = (M_{\eta_A}^2 - M_{h^{\pm}}^2)/v^2 = -5.49 \times 10^{-2}$$

• $\lambda_3 + \lambda_4 = -3.00 \times 10^{-3};$ results insensitive to $|\lambda_3 + \lambda_4| < 5 \times 10^{-3}.$

v_2 (GeV)	ß	α μ	$\frac{2}{3}$ (GeV ²)	λ_1	λ ₂
10	0.04066	$-0.348 imes10^{-2}$	36.6	0.1293	$0.833 imes10^{-2}$
12.5	0.05084	$-0.435 imes10^{-2}$	45.7	0.1294	$0.833 imes10^{-2}$
15	0.06101	$-0.522 imes10^{-2}$	54.8	0.1295	$0.833 imes10^{-2}$
20	0.08139	$-0.695 imes 10^{-2}$	72.9	0.1299	$0.832 imes10^{-2}$

v 2	(GeV)	$B(h o \mu^+ \mu^-$	$(b \rightarrow \overline{b}b)^B$	$(\eta_A o \mu^+ \mu^-$	$B(\eta_A o ar{b}b)$	$B(Z ightarrow \overline{b}b\mu\mu)$
	10	0.9999	$0.444 imes 10^{-4}$	0.9923	$0.667 imes10^{-2}$	$0.950 imes10^{-4}$
	12.5	0.9998	$1.085 imes 10^{-4}$	0.9814	$1.613 imes10^{-2}$	$2.297 imes10^{-4}$
	15	0.9997	$2.249 imes10^{-4}$	0.9622	$3.286 imes10^{-2}$	$4.673 imes10^{-4}$
	20	0.9991	$7.105 imes10^{-4}$	0.8889	$9.652 imes10^{-2}$	$13.67 imes10^{-4}$

The predictions

1.) The dimuon signal at LEP and LHC will be observed only in Z-decay and in association with $\overline{b}b$. 1.) The dimuon signal at LEP and LHC will be observed only in Z-decay and in association with $\overline{b}b$.

2.) Signal dimuons will have a <u>common</u> production vertex. Background dimuons are sl decays, $b \rightarrow c \mu \nu_{\mu}$ and do not have a common vertex. 1.) The dimuon signal at LEP and LHC will be observed only in Z-decay and in association with $\overline{b}b$.

2.) Signal dimuons will have a <u>common</u> production vertex. Background dimuons are sl decays, $b \rightarrow c \mu \nu_{\mu}$ and do not have a common vertex.

3.) Signal dimuons have an isotropic $\cos \theta^*$ distribution. Its flat shape is modified to an inverted ~parabola in $\theta_T < \theta^* < \pi - \theta_T$ when there is a $p_T \gtrsim 7 \text{ GeV}$ cut on the muons. (θ_T increases with the p_T cut.) <u>All the signal lies in $|\cos \theta^*| < \cos \theta_T$.</u> (See figures.)

Z's at rest

Note: Normalized to unit area!

Z's boosted <u>along</u> beams

Z's at rest

Low-pT muons have large rapidity & escape

Lose backward-going muons for h at 90°

more predictions

4.) Signal dimuons will *not* have a strong tendency to follow *b*-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation. 4.) Signal dimuons will *not* have a strong tendency to follow *b*-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation.

5.) $M_{\overline{b}b}$ in the dimuon signal region will show an excess near M_{η_A} , nominally 30 GeV.

- 4.) Signal dimuons will not have a strong tendency to follow b-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation.
- 5.) $M_{\overline{b}b}$ in the dimuon signal region will show an excess near M_{η_A} , nominally 30 GeV. (VERY difficult to change M_{η_A} in the model!)

- 4.) Signal dimuons will not have a strong tendency to follow b-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation.
- 5.) $M_{\bar{b}b}$ in the dimuon signal region will show an excess near M_{η_A} , nominally 30 GeV. (VERY difficult to change M_{η_A} in the model!)
- 6.) Charged $h^{\pm} \to \mu^{\pm} \nu_{\mu}$ and $M_{h^{\pm}} \gtrsim M_H/2$. Most readily sought in $\gamma^*, Z^* \to h^+h^-$ and $W^* \to hh^{\pm}$.

- 4.) Signal dimuons will not have a strong tendency to follow b-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation.
- 5.) $M_{\bar{b}b}$ in the dimuon signal region will show an excess near M_{η_A} , nominally 30 GeV. (VERY difficult to change M_{η_A} in the model!)
- 6.) Charged $h^{\pm} \to \mu^{\pm} \nu_{\mu}$ and $M_{h^{\pm}} \gtrsim M_H/2$. Most readily sought in $\gamma^*, Z^* \to h^+h^-$ and $W^* \to hh^{\pm}$.
- 7.) There will be *no* observable **30** GeV excess in $Z \rightarrow \overline{b}b e^+e^-$.

- 4.) Signal dimuons will *not* have a strong tendency to follow *b*-jets (in conflict with ALEPH data). But, at the LHC, the Z-boost makes muons \ll isolated. Use $p_T(Z) > 30$ GeV for more muon isolation.
- 5.) $M_{\overline{b}b}$ in the dimuon signal region will show an excess near M_{η_A} , nominally 30 GeV. (VERY difficult to change M_{η_A} in the model!)
- 6.) Charged $h^{\pm} \to \mu^{\pm} \nu_{\mu}$ and $M_{h^{\pm}} \gtrsim M_H/2$. Most readily sought in $\gamma^*, Z^* \to h^+h^-$ and $W^* \to hh^{\pm}$.
- 7.) There will be *no* observable **30** GeV excess in $Z \rightarrow \bar{b}b e^+e^-$.
- 8.) And no $H(125) \rightarrow \mu^+\mu^-$ if $(\alpha/\beta)^2 \ll 1$.

The fly in the ointment

(what you waited for!)

The fly in the ointment

 $B(h \to \mu^+ \mu^-) \cong B(\eta_A \to \mu^+ \mu^-) \cong 1$ $B(Z \to h\eta_A) = 0.014 \cos^2(\beta - \alpha) \text{ with } \beta, \alpha \text{ small}$ $\implies B(Z \to h\eta_A \to 4\mu) \cong 0.014$

The fly in the ointment

 $B(h \to \mu^+ \mu^-) \cong B(\eta_A \to \mu^+ \mu^-) \cong 1$ $B(Z \to h\eta_A) = 0.014 \cos^2(\beta - \alpha) \text{ with } \beta, \alpha \text{ small}$ $\implies B(Z \to h\eta_A \to 4\mu) \cong 0.014$

3300 times measured $B(Z \rightarrow 4\mu) = 4.2 \times 10^{-6}!!$

Dead flies cause the ointment of the apothecary to send forth a stinking savour: so doth a little folly him that is in reputation for wisdom and honour. Ecclesiastes 10: 1

Dead flies cause the ointment of the apothecary to send forth a stinking savour: so doth a little folly him that is in reputation for wisdom and honour. Ecclesiastes 10: 1 Who? Me?

Some things we tried:

1.) Cannot raise M_{η_A} or alter $(B(h \to \mu^+ \mu^-) B(\eta_A \to \bar{b}b) \propto \cos^2 \alpha / \cos^2 \beta$ nor $B(h \to \bar{b}b) B(\eta_A \to \mu^+ \mu^-) \propto \sin^2 \alpha / \sin^2 \beta$ without ruining H-signal strengths and/or greatly increasing $B(H \to hh, \eta_A \eta_A)$.

Some things we tried:

1.) Cannot raise M_{η_A} or alter $(B(h \to \mu^+ \mu^-) B(\eta_A \to \bar{b}b) \propto \cos^2 \alpha / \cos^2 \beta$ nor $B(h \to \bar{b}b) B(\eta_A \to \mu^+ \mu^-) \propto \sin^2 \alpha / \sin^2 \beta$ without ruining H-signal strengths and/or greatly increasing $B(H \to hh, \eta_A \eta_A)$.

2.) Use the Branco-Grimus-Lavoura (BGL) mechanism to dilute $B(h, \eta_A \rightarrow \mu^+ \mu^-)$.

Here's what we tried for BGL...

BGL: Allow FCNC in 3rd generation of up <u>or</u> down-Yukawa's; 4 possibilities:

1.) Interchanging FCNC $\Gamma_1 \leftrightarrow \Gamma_2$ fails for *u*-textures: $\Gamma_{h,\eta_A \bar{t}t} / \Gamma_{H \bar{t}t} \simeq \cot \beta \Longrightarrow h, \eta_A \to gg (!!)$

for *d*-textures: $B(h, \eta_A \to \bar{b}b)/B(h, \eta_A \to \mu^+\mu^-) = 3(m_b/m_\mu)^2$ kills ALEPH signal! 1.) Interchanging FCNC $\Gamma_1 \leftrightarrow \Gamma_2$ fails for *u*-textures: $\Gamma_{h,\eta_A \bar{t}t} / \Gamma_{H \bar{t}t} \simeq \cot \beta \Longrightarrow h, \eta_A \to gg (!!)$

for *d*-textures: $B(h, \eta_A \rightarrow \bar{b}b)/B(h, \eta_A \rightarrow \mu^+\mu^-) = 3(m_b/m_\mu)^2$ kills ALEPH signal!

2.) For displayed FCNC textures in *u*-sector: $B(h, \eta_A \to \bar{c}c) \simeq 0.99 >> B(h, \eta_A \to \mu^+\mu^-; \bar{b}b)$ inconsistent with no signal in inverted *b*-tag data;

in *d*-sector: $B(B_{d,s} \to \mu^+ \mu^-) \gtrsim 10^7 \times \text{experiment}$.

1.) Interchanging FCNC $\Gamma_1 \leftrightarrow \Gamma_2$ fails for *u*-textures: $\Gamma_{h,\eta_A \bar{t}t} / \Gamma_{H \bar{t}t} \simeq \cot \beta \Longrightarrow h, \eta_A \to gg (!!)$

for *d*-textures: $B(h, \eta_A \rightarrow \bar{b}b)/B(h, \eta_A \rightarrow \mu^+\mu^-) = 3(m_b/m_\mu)^2$ kills ALEPH signal!

2.) For displayed FCNC textures in *u*-sector: $B(h, \eta_A \to \bar{c}c) \simeq 0.99 >> B(h, \eta_A \to \mu^+\mu^-; \bar{b}b)$ inconsistent with no signal in inverted *b*-tag data;

in *d*-sector: $B(B_{d,s} \to \mu^+ \mu^-) \gtrsim 10^7 \times \text{experiment}$.

<u>A no-go theorem?</u>

bj to KL (SLAC, 1977):

There are no no-go theorems!

A challenge to theorists -

bj to KL (SLAC, 1977):

There are no no-go theorems!

A challenge to theorists to repeal and replace this model...

bj to KL (SLAC, 1977):

There are no no-go theorems!

A challenge to theorists to repeal and replace this model...

Especially if the dimuon is also seen in ATLAS, CMS, LHCb, L3...