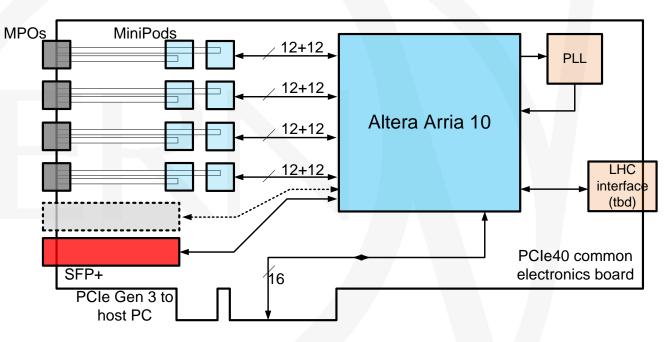


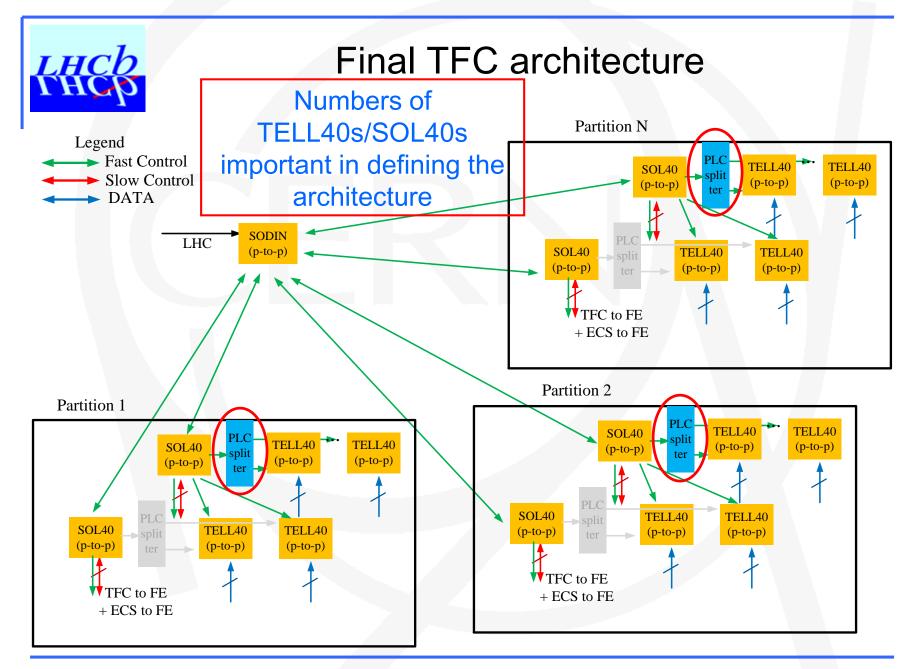
Towards the final TFC architecture Part II

08 June 2017

F. Alessio, CERN



TFC on common hardware backbone


Specs:

- Firepower of 48 bidir links
- TFC interface on SFP+ (two SFP+ in final system)
- On-board external PLL for deterministic phase resynchronization

Same exact hardware (PCIe40), firmware defines the functionality: SODIN, SOL40, TELL40

- The Host PC is the PC controlling the board (ex CCPCServer/SPECServer → GbtServer)
- In principle ~100 Gbps of ECS access and data bandwidth
- External connection to TFC/LHC peripheral boards via electrical connections (LVDS)
 - As usual, tight and proficuous collaboration with CPPM

LHCb Electronics Upgrade Meeting, 08/06/17

Final TFC architecture - considerations

- 1. # of SODINs = 1 \rightarrow single Readout Supervisor
 - \rightarrow total max available destinations = 48
 - Each SODIN should also transmit event data bank → interface to DAQ + PC
 - Partitioning ensured by independent cores inside SODIN FPGA
 - Routing inside FPGA done accordingly, very simple management
- 2. # of SOL40s dictated by sub-detectors needs for FEs
 - Current numerology SOL40s for FE
 - → VELO: 4, UT: 3, SCIFI: 12, RICH: 10, CALO: 2, MUON: 6 → total = 37
 - Minimum # of splitters == number of partitions (currently 13)
 - → Profiting from the second SFP+ on PCIe40 to connect SOL40 to SODIN

	Number	# DAQ interface	# PC interface	# splitter	# MPO splitter	# extra- optics	Individu al total costs	Unitary cost	Cost per type of card	Total cost
SODIN	1	1	1				16	16.0	16	
SOL40 for TELL40	0		0	13	0		6	0.5	450	466
SOL40 for FE	37		37				444	12.0	450	kCHF*

* Mixture of Online and sub-detector budget... ©

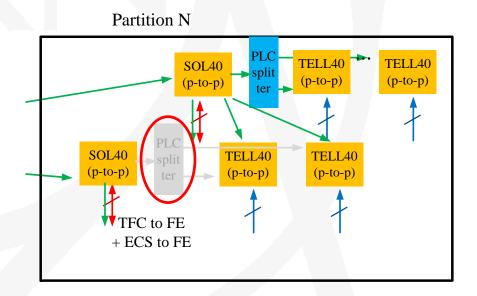
Definition of partitions

Partitioning is considered essential in our architecture

- commissioning, local tests, exclude/include
- Current numerology for TELL40s
 - → VELO: 52, UT: 68, SCIFI: 144, RICH: 102, CALO: 42, MUON:28 → total = 436

Partition:

- «minimal» ensemble of detectors that can be run independently with TFC and ECS
 - VELO = 2 (A/C side)
 - UT = 2 (A/C)
 - SciFi = 4 (Q1/Q2/Q3/Q4)
 - RICH = 3 (1 for RICH1 and 2 for RICH2, A/C)
 - CALO = 1
 - MUON = 1

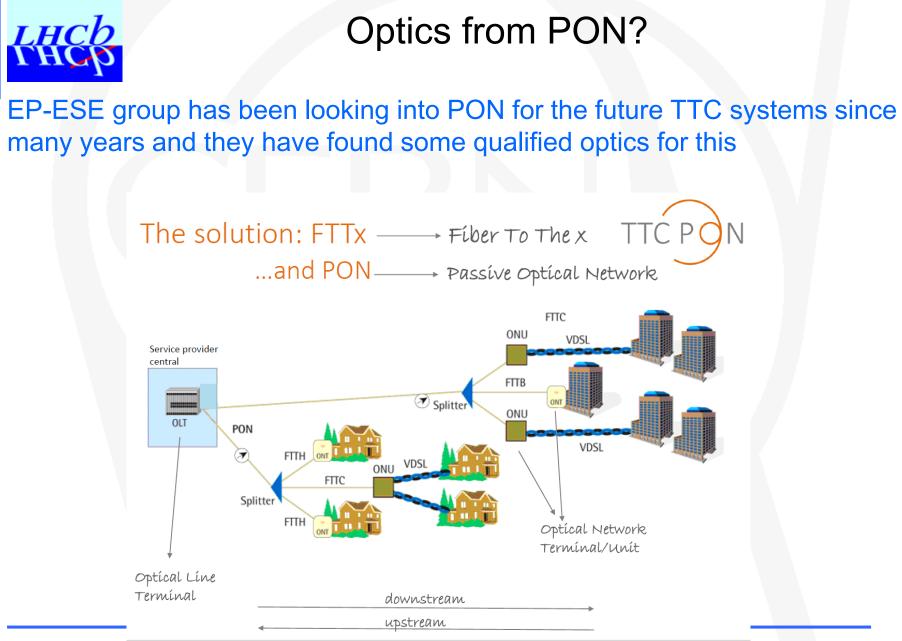

Total = 13

NB: partitioning has direct impact on the (cost of the) TFC architecture, optimisation!

Final TFC architecture - considerations

- 3. Good flexibility to expand the system later on or to accommodate changes
 - More available output from SODIN \rightarrow ~11
 - ✓ Can even include other partitions later on
- 4. No more bidirectionality with TELL40s
 - Possible that the backpressure information will be transmitted by network to SODIN for fast feedback
 - In any case, information must be available to ECS for monitoring

Considerations on optical splitters


Architecture supposes the use of optical splitters to distribute TFC to TELL40

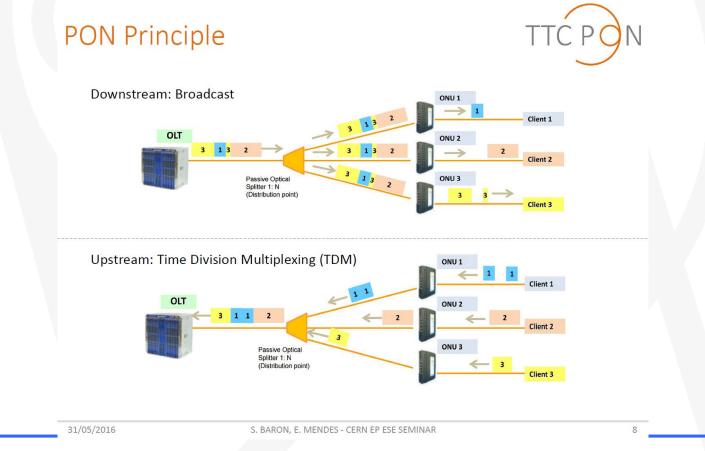
- Choose PLC* over FBT** cause not sensitive to wavelength (to be used at 1310nm) and higher degree of splitting (can go up to 1:64)
- → Better stability across all ratios

Not enough power budget from PCIe40 through standard SFP+

Specification

Parameter				Specifications								
Operating Wavelength(nm)				1260~1650								
Туре			1×8	1×16	1×32	1×64	2×2	2×4	2×8	2×16	2×32	2×64
Insertion Loss(db) typical			10	13	16	19.5	4	7	10.5	13.5	16.5	20.5
Uniformity(db) typical			0.5	1	1	2.5	0.6	8.0	1	1.5	2	2
PDL(db)Max typical			0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.2
Wavelength department loss(db) typical			0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.2
Temperature department loss(db) typical			0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4
Directivity(db)Min				55								
Return Loss(db)Min			55(50)									
Operating temperature				-40~+85 *Planar Lightwave C							Circu	
Strorage temperature				-40~+85 **Fused Biconical Tape							Taper	
	typical typical typical	typical 0.4 typical 0.1 typical 0.1 typical 0.3 typical 55 55(5) -40~	typical 3.6 6.8 typical 0.4 0.5 typical 0.1 0.1 typical 0.1 0.1 typical 0.3 0.3 typical 55 55(50) -40~+85 -40~+85	typical 3.6 6.8 10 typical 0.4 0.5 0.5 typical 0.1 0.1 0.1 typical 0.1 0.1 0.1 typical 0.1 0.1 0.1 typical 0.3 0.3 0.3 typical 55 55(50) -40~+85	typical 3.6 6.8 10 13 typical 0.4 0.5 0.5 1 typical 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.1 0.1 typical 0.1 0.1 0.1 0.1 typical 0.3 0.3 0.3 0.4 typical 55 55(50) -40~+85	typical 3.6 6.8 10 13 16 typical 0.4 0.5 0.5 1 1 typical 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.1 0.2 typical 0.3 0.3 0.3 0.4 0.4 55 55(50) 55(50) -40~+85 55 55(50)	1×2 1×4 1×8 1×16 1×32 1×64 typical 3.6 6.8 10 13 16 19.5 typical 0.4 0.5 0.5 1 1 2.5 typical 0.1 0.1 0.1 0.2 0.2 0.2 typical 0.1 0.1 0.1 0.1 0.2 0.2 typical 0.3 0.3 0.3 0.4 0.4 0.4 typical 0.1 0.1 0.1 0.2 0.2 0.2 typical 0.3 0.3 0.3 0.4 0.4 0.4 55 - - 55(50) - - - -40~+85 - - - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: Normal System Image: Normal System <t< td=""><td>1260~1650 1x2 1x4 1x8 1x16 1x32 1x64 2x2 2x4 2x8 2x16 typical 3.6 6.8 10 13 16 19.5 4 7 10.5 13.5 typical 0.4 0.5 0.5 1 1 2.5 0.6 0.8 1 1.5 typical 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 typical 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.4 <th< td=""><td>1260~1650 1x2 1x4 1x8 1x16 1x32 1x64 2x2 2x4 2x8 2x16 2x32 typical 3.6 6.8 10 13 16 19.5 4 7 10.5 13.5 16.5 typical 0.4 0.5 0.5 1 1 2.5 0.6 0.8 1 1.5 2 typical 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.4 0.4</td></th<></td></t<>	1260~1650 1x2 1x4 1x8 1x16 1x32 1x64 2x2 2x4 2x8 2x16 typical 3.6 6.8 10 13 16 19.5 4 7 10.5 13.5 typical 0.4 0.5 0.5 1 1 2.5 0.6 0.8 1 1.5 typical 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 typical 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.4 <th< td=""><td>1260~1650 1x2 1x4 1x8 1x16 1x32 1x64 2x2 2x4 2x8 2x16 2x32 typical 3.6 6.8 10 13 16 19.5 4 7 10.5 13.5 16.5 typical 0.4 0.5 0.5 1 1 2.5 0.6 0.8 1 1.5 2 typical 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.4 0.4</td></th<>	1260~1650 1x2 1x4 1x8 1x16 1x32 1x64 2x2 2x4 2x8 2x16 2x32 typical 3.6 6.8 10 13 16 19.5 4 7 10.5 13.5 16.5 typical 0.4 0.5 0.5 1 1 2.5 0.6 0.8 1 1.5 2 typical 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.4 typical 0.3 0.3 0.4 0.4

LHCb Electronic 31/05/2016


S. BARON, E. MENDES - CERN EP ESE SEMINAR

9

гнср

Optics from PON?

EP-ESE group has been looking into PON for the future TTC systems since many years and they have found some qualified optics for this

Latest results from optics

Test setup in lab

SFP+ → GoFoton/SuperXon optical modules (N2a class)

- OLT: SOGX6292-PSGB
- ONU: SOGX2629-PSIGA
- Same size as the SFP+, PCIe40 already designed to accept such modules

Splitters \rightarrow CubeOptics PON

1:64 split ratio (composed of 1:32 and 1:2)

Single Mode Fibers, 200m (NB: each km adds -0.5 dB of loss)

Label	Contribution	Power
А	Downstream Power Budget (with FEC)	29.68 dB
В	Attenuation (1:64)	22.8 dB
C = A- B	Downstream Optical Power Margin (with FEC)	6.88 dB
D	Downstream Power Budget (with no FEC)	26.68 dB
E= D-B	Downstream Optical Power Margin (with FEC)	3.88 dB

LHCb Electronics Upgrade Meeting, 08/06/17

F. Alessio

S. Baron et al.

гнср

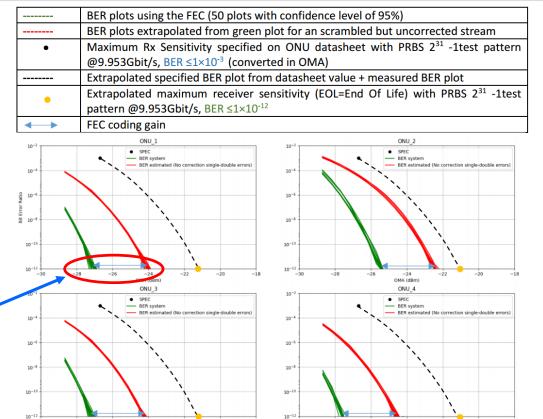
Latest results from optics

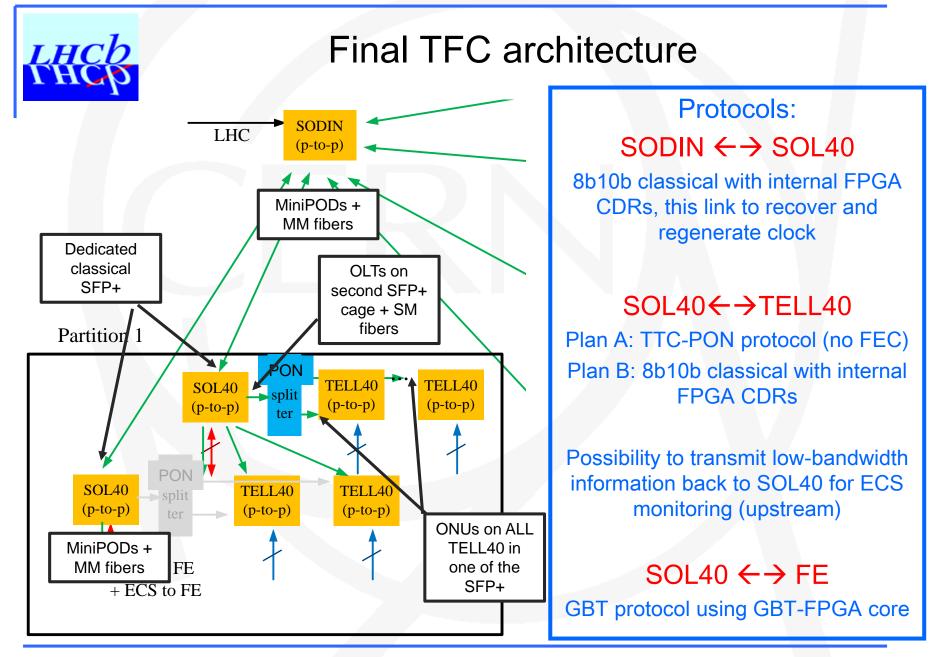
OMA (dBm)

Already enough power budget with no FEC

 \rightarrow FEC adds 3 dB of power to the margin

S. Baron et al.


OMA (dBm)


- FEC used is BCH(120,106) with single- and double-error correction
- Running at XGPON TTC adapted bandwidth (9.6 Gbps)

Decided to tag along with ESE group and ALICE to buy the optics for OLTs and ONUs to distribute TFC to the TELL40

Gain due to FEC and PON

LHCb Electronics Upgrade Meeting, 08/06/17

Final TFC architecture – extra costs

Equip each SOL40 used to control TELL40s in a partition with OLT specific optics

- Minimum number 13, but allow for each partitions to have at least two SOL40-OLTs → 26
- Cost enquiry is around +500 USD per optics wrt classical SFP+

Equip all TELL40s with ONUs specific optics

 No extra-cost wrt to SFP+, cost enquiry shows comparable values (100USD)

Decided to add 35% spares to make sure we don't risk any technology obliteration

- 35 OLTs
- 564 ONUs
- 35 splitters

Cost of 91.4 kCHF (wrt 73.9 kCHF w/o PON optics)

Final TFC architecture – extra considerations on location

TTC-PON optics are qualified for >> km distance and split ratio 1:64
→ Leave freedom to where to physically put TFC system
(reminder: data center decided to be at pt8 in surface)

Case 1: put ALL TFC system undeground (D2/D3) Pros:

- Short distances between SODIN-SOL40 and SOL40-FE
- Extra free space in container
- SODIN located where LHC interfaces are

Cons:

- Need to pull ~3000 duplex fibers across shielding wall (TFC to FE)
- Need to pull ~50 single mode fibers upstairs (splitters being upstairs)
- Need to bring SODIN data bank upstairs

Luck Final TFC architecture – extra considerations

TTC-PON optics are qualified for > km distance and split ration 1:64
→ Leave freedom to where to physically put TFC system (reminder: data center in surface)

Case 2: put ALL TFC system in surface

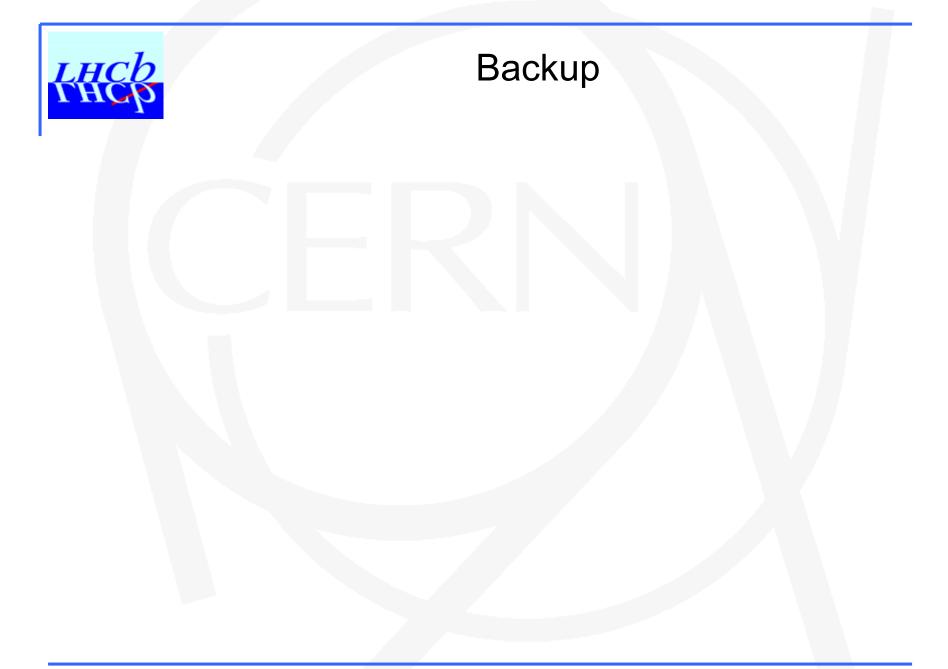
Pros:

- Everything in the same place, no need to pull extra-fibers
- Short single-mode fibers between SOL40→splitter→TELL40

Cons:

- SODIN not in same place as LHC interfaces, re-route LHC clock NB: LHC clock already in surface, so minor intervention
- Long distance SOL40→FE for timing distribution
- No extra free space in container (TFC is ~10% of the system)

Discussion already started on where to put everything,



Outlook

MiniDAQ2 are now available at CERN. Next steps:

- Create a small cluster: SODIN->SOL40->TELL40(and generic FE)
- Re-implement 8b10b TFC protocol in Arria X with specific SFP+ link
 - \circ Work in collaboration with Marseille, as usual
 - Perform tests with latency, clock phase and timing/readout control distribution
- Obtain few samples of new optics and splitter and re-do tests
- Include new TTC-PON firmware core in firmware and re-do tests
- The dream is to run few MiniDAQ2 in parallel to the current experiment... ⁽²⁾

NB: numbers for SOL40+TELL40 from sub-detectors have an impact on TFC architecture.

Costs per item

Costs per item	kCHF				
DAQ interface	4				
PC interface	4				
PCIe40	8				
OLT transmitter	0.5				
ONU receiver	0.1				
PON splitter	0.5				
MPO splitter	0.15				
MiniPODs (pair of tx/rx)	0.9				

гнср

TFC commands and data

TFC information will remain the same: 64 bits @ 40 MHz encoded in 8b10b \rightarrow 2.56 Gbps user data, 3.2 Gbps with encoding (no extra logic needed)

	63	52	51		50	49 1	18	17	714	1	310	
	BXI	D(110)	Reser	ve	MEP Accept	MEP Dest(3	310)	Trigge	r Type(30)	Calibra	tion Type(3.	.0)
			_									
9		8		7	6	5		4	3	2	1	0
Sync	ch S	Snapshot	Tri	gger	BX Vet	o NZS Mode		eader Only	BE Reset	FE Reset	EID Reset	BXID Reset
					/		Z	k				

Trigger command to accept events for that BXID:
 → Trigger acting as a VETO to rate regulate the system

- Not based on physics decision (NO LLT)
- Unbiased (random) rate regulation of the system by reducing the rate at which trigger is set → based on «gears»

LHCK A subset of these commands is relayed to the FEs

MEP accept command when MEP ready:

- Take MEP address and send all fragments to that address
- Dynamic mechanisms based on well-oiled mechanism used today
- Investigations ongoing to see if a different mechanism is more suited for upgraded system
- This may possible be dropped at the TFC level

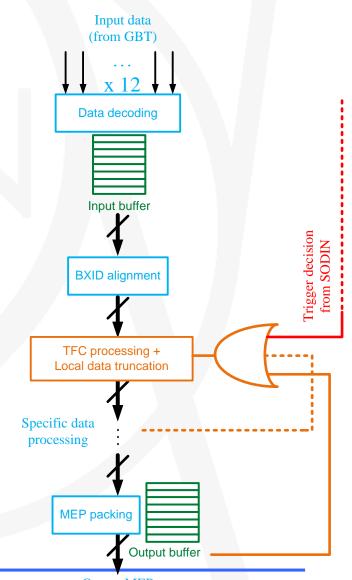
Rate regulation to reduce output bandwith

- → Rate regulation in SODIN is considered as the safest mechanism to reduce output bandwidth or relieve backpressure
- → Out of the full 40 MHz, only ~28 MHz contains beam-beam, ~4 MHz contains beam-empty/empty-beam, ~8 MHz contains emtpy-empty
 - SODIN can have a programmable mask that defines the rate of crossing types to be kept
 - $\checkmark~$ 100% for bb, 25% for eb/be and 10% for ee
 - ✓ Effectively the full input rate is 30 MHz.

	ee	eb+be	bb	1 AL
Number of crossing	762	180 + 180	2442	
Rate	8.6 MHz	4.06 MHz	27.5 MHz	
Accepted fraction	10%	25%	100%]

 \rightarrow This was described in <u>EDMS 1606939</u> as Renaud mentioned a while ago.

Lнср гнср


Drop SODIN-TELL40 bidir

Upstream communication seems the most complicated issue in the TTC-PON architecture and probably we don't even need it

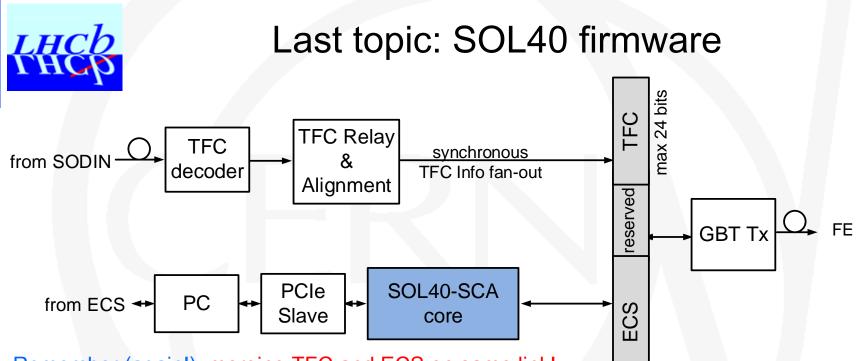
- 1. TELL40 will throttle locally
- 2. Roundtrip between SODIN-TELL40 for a specific BXID would be complicated and adds logic in the TELL40
- 3. Need to fix a maximum latency (SODIN-TELL40 for trigger)
 - Complicated in a fully asynchronous system...

Information on backpressure rather sent through network : will be investigated

→ SODIN could apply «gears» to its trigger rate by reducing the rate by the same proportion

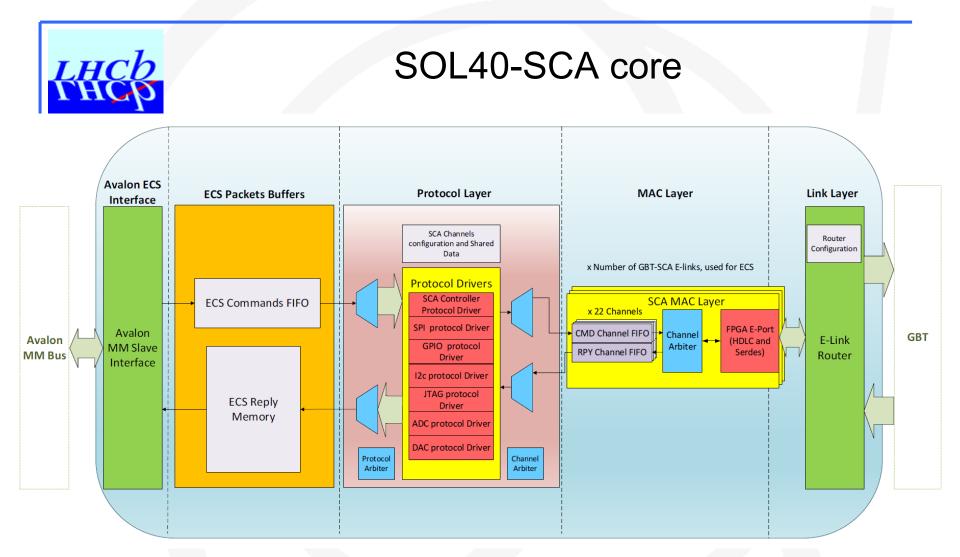
LHCb Electronics Upgrade Meeting, 08/06/17

Output MEP (to PCIe bus)



TFC output bandwidth

SODIN will also transmit a data bank to the DAQ for each «accepted event»


- Also defines the MEP size (can be dynamic and also very big)
- Currently is 44 bytes @ 1 MHz \rightarrow 352 Mbps / 44 bytes @ 40 MHz \rightarrow ~14 Gbps
 - ✓ Can be expanded to include more informations as we have ~100 Gbps for central data taking
 - ✓ Can be reduced to allow max 10 partitions to run in parallel (~10 Gbps \rightarrow 32 bytes/8 words)

Word	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0						
#H0	Size in b	ytes = 44	Magic Patter = 0xCBCB							
#H1	Source ID =	"ODIN S/N"	Version = 2	Type = 0x10						
#D0		Run Number (31 0)								
#D1		Event Type (310)								
#D2	Orbit ID (31 0)									
#D3	Event ID (63 32)									
#D4		Event ID (31 0)								
#D5	GPS Time (63 32)									
#D6	GPS Time (31 0)									
#D7	Error Flags Detector Status (230)									
#D8	LHC info	BX TypeRRTrigger Type	R R R R	Bunch ID						

Remember (again!): merging TFC and ECS on same link!

- → SOL40 firmware will take care of doing all the complicated bit manipulations needed to control GBTs, its SCAs and your FE chipsets
 - Single firmware for everybody with all necessary features and requirements
 - \rightarrow minimize unconformities, highly programmable and customizable
 - \rightarrow modular (can get a core and put it somewhere else in an eval board)
 - Centrally provided with ECS support
- \rightarrow In addition it will distribute the TFC commands from SODIN to FE with fixed latency.

1 core per GBT, scalable support for SCAs, all SCA buses, *vendor/FPGA independent*, modular control, error detection capabilities This is a CERN-wide development: i.e. the other experiments are going to use it.