

Update on BT.KFA10(20) recombination kickers

Vincenzo Forte, Matthew Alexander Fraser (TE-ABT/BTP) L. Sermeus (TE-ABT/EDS)

LIU-PSB meeting 9th May 2017

LIU PSB meeting 09 May 2017

BT.KFA10 test 12 in B867: kick

LHC Injectors Upgrade

➢ After 17th January 2017 LIU-PSB presentation → Two magnets connected with saturating inductor and filters, MS cathode&anode filters.

- One generator supplying two magnets connected the same way as KFA10.
- Four cables connected for 6.25Ω impedance.
- Magnets equipped with CMD5005 ferrite type.
- Filters added and modified. Saturating inductor at magnet input.
- PFL voltage: 56kV (required for 2GeV beam)
- Magnet current: ~4500A (thyratron current: 9000A)

BT.KFA10 test 7 in B867: kick of upstream

LHC Injectors Upgrade magnet

LHC Injectors Upgrade

- **PSpice simulations** of installed systems (BT.KFA10s & 20)
- Optimisation of filters done and calculated kick waveforms performed for emittance growth estimate → See next slides
- Spare design/order status
- Spare KFA10 tank ordered, drawings complete, raw material sent to supplier.
- Ferrite samples tested by TE/VSC and approved. Production started but delivery delayed by the supplier. Should be ok.
- Magnet drawings finished but still to be checked. Inquiries sent.
- Material for capacitor plates (6mm thick) received.
- HV feedthroughs should be delivered soon.
- The new tank should be ready for tests by the end of 2017.

Present beam-based waveforms: rise time and flat-top ripple

>The beam-based measurements (at 200 ppb) show that we are just within specification*

* **Reference:** Specification for KICKER SYSTEMS FOR 2.0 GeV PSB to PS BEAM TRANSFER (PS-MKKIK-ES-0001)

Presented at LIU beam parameters meeting - 03-03-2017

LIU PSB meeting 09 May 2017

HW specifications → emittance blow-up LHC Injectors Upgrade expectations

Reference: Specification for KICKER SYSTEMS FOR 2.0 GeV PSB to PS BEAM TRANSFER (PS-MKKIK-ES-0001)

h _{PS} =7	Rise time (2-98%)	Flat-top ripple
1.4 GeV	104 ns	. 20/
2 GeV	105 ns	±2%

From simulations assuming a 20 MHz sinusoidal flat-top ripple of ±2%, one can deduce:

Est. emittance growth: present LHC25 beam **1.4 GeV** Presented at LIU beam

LHC Injectors Upgrade

parameters meeting - 03-03-2017

>From the present (beam-based) reconstructed waveforms we simulate the vertical emittance growth >LHC25 'Standard' beam production: $\varepsilon_{0,y,n} = 1.8$ um 1.2

>1.4 GeV – 327 ns bunch spacing – 180 ns bunch length

$\Delta \varepsilon_{y} / \varepsilon_{y,0}$ [%]	R1	R2	R3	R4
BT1.KFA10	2.0	0.0	0.0	0.0
BT4.KFA10	0.0	0.0	0.0	1.0
BT2.KFA20	0.4	0.4	0.0	0.0
Sum in quadrature	2.0	0.4	0.0	1.0

>1.4 GeV – 327 ns bunch spacing – 220 ns bunch length

$\Delta \varepsilon_{y} / \varepsilon_{y,0}$ [%]	R1	R2	R3	R4
BT1.KFA10	2.3	1.0	0.0	0.0
BT4.KFA10	0.0	0.0	1.9	1.9
BT2.KFA20	0.4	0.4	0.0	0.0
Sum in quadrature	2.3	1.1	1.9	1.9

Update on BT.KFA10(20) recombination

PSpice simulations for future post-LIU set-up

LHC Injectors Upgrade

PSpice simulations for future KFA10 and KFA20 set-up have been performed for the future post-LIU set-up
From PSpice simulations it is possible to simulate future realistic vertical emittance growth induced by the KFAs.

LIU PSB meeting 09 May 2017

Est. emittance growth: future LHC25 beam 1.4 GeV

LHC Injectors Upgrade

> From the PSpice waveforms it is possible to simulate the vertical emittance growth induced by the KFAs. >LHC25 'Standard' beam production: $\varepsilon_{0,y,n} = 1.8$ um

≻1.4	GeV -	327 r	ns bund	h spaci	ng – 220) ns	bunch	length

Δε _y /ε _{y,0} [%]	R1	R2	R3	R4
BT1.KFA10	1.9	1.9	0	0
BT4.KFA10	0	0	1.9	1.9
BT2.KFA20	0.5	1.3	0	1.3
Sum in quadrature	2	2.3	1.9	2.3

LIU PSB meeting 09 May 2017

Est. emittance growth: future LHC25 beam 2 GeV

From the PSpice waveforms it is possible to simulate the vertical emittance growth induced by the KFAs. >LHC25 'Standard' beam production: $\varepsilon_{0,y,n} = 1.8$ um >PSpice: 2 GeV – 316 ns bunch spacing – ~205 ns bunch length*

Δε _y /ε _{y,0} [%]	R1	R2	R3	R4
BT1.KFA10	1.9	1.9	0.0	0.0
BT4.KFA10	0.0	0.0	1.9	1.9
BT2.KFA20	0.8	1.4	0	1.4
Sum in quadrature	2.1	2.4	1.9	2.4

CERN EDMS : 1296306

*LIU beam parameters table

PSpice: 2 GeV – 316 ns bunch spacing – ~213 ns bunch length**

$\Delta \varepsilon_{y} / \varepsilon_{y,0}$ [%]	R1	R2	R3	R4
BT1.KFA10	2.7	2.7	0.0	0.0
BT4.KFA10	0.0	0.0	2.7	2.7
BT2.KFA20	0.8	1.6	0	1.6
Sum in quadrature	2.8	3.1	2.7	3.1

**similar to Specification for KICKER SYSTEMS FOR 2.0 GeV PSB to PS BEAM TRANSFER (PS-MKKIK-ES-0001)

→ 211 ns = 201 ns b. length + 10 ns jitter peak-to-peak

LIU PSB meeting 09 May 2017

Jitter in time of recombination kickers

LHC Injectors Upgrade

The jitter in time of the recombination kickers has been observed over ~13700 ISOLDE cycles.
The peak-to-peak jitter is ~12 ns

>However, the maximum standard deviation is <1.4 ns

LIU PSB meeting 09 May 2017

Conclusions

LHC Injectors Upgrade

>HŴ improvements for the BT1(4).KFA10 and BT2.KFA20 have been presented:

- BT.KFAs kicker rise time measurements in SAL5 test cage (May 2017)
- Status of spare design
- **PSpice simulations in post-LIU configurations** (to simulate future expected emittance growth)
- The maximum estimated vertical emittance growth due to the recombination kickers for the present (beam-based) kicker waveforms (just within specification for rise time and flat-top ripple) is:
 - 2.0% / ring (1.1% average) for 1.4 GeV (180 ns bunch length, 327 ns bunch spacing);
 - 2.3% / ring (1.8% average) for 1.4 GeV (220 ns bunch length, 327 ns bunch spacing);

The maximum estimated vertical emittance growth due to the recombination kickers for the final LIU-PSB PSpice simulated waveforms is:

- 2.3% / ring (2.1% average) for 1.4 GeV (220 ns bunch length, 327 ns bunch spacing);
- 2.4% / ring (2.2% average) for 2.0 GeV (205 ns bunch length, 316 ns bunch spacing);
- 3.1% / ring (2.9% average) for 2.0 GeV (213 ns bunch length, 316 ns bunch spacing);

Observations on the operational jitter in time of the recombination kickers have shown ~12 ns peak-to-peak and standard deviation <1.4 ns</p>

>The vertical emittance growth quantities have to be considered in a global scenario of emittance growth sources at PS injection (e.g. optics mismatch and space charge) \rightarrow PS TFB could be helpful for damping

- 5% (horizontal and vertical) emittance growth budget along all PS cycle*
- ~4% remaining budget from other emittance growth sources (e.g. optics, space charge, etc.)

*LIU beam parameters table CERN EDMS : 1296306

www.cern.ch

Appendix

LIU PSB meeting 09 May 2017

Time margins: **measurements**

LHC Injectors Upgrade

April 24, 2017 – Beam parameters at injection of each accelerator								
PSB (H ⁻ injection from Linac4)								
		N (10 ¹¹ p)	$\epsilon_{x,y}$ (µm)	E (GeV)	ϵ_z (eVs)	B_l (ns)	$\delta p/p_0 \ (10^{-3})$	$\Delta Q_{x,y}$
Ashiow	J Standard	17.73	2.14	0.05	1.0	1100	2.4	(0.51, 0.59)
Acmeve	BCMS	8.48	1.15	0.05	0.9	1000	2.2	(0.46, 0.56)
I III tore	Standard	34.21	1.72	0.16	1.4	650	1.8	(0.58, 0.69)
LIO taiş	BCMS	17.11	1.36	0.16	1.4	650	1.8	(0.35, 0.43)
		PS	(Standard:	4b+2b - B	SCMS: $2 \times$	4b)		
		N (10 ¹¹ p/b)	$\epsilon_{x,y}$ (µm)	E (GeV)	ϵ_z (eVs/b)) B_l (ns) $\delta p/p_0 (10^{-3})$) $\Delta Q_{x,y}$
Achieved	Standard	16.84	2.25	1.4	1.2	180	0.9	(0.25, 0.30)
Acmeved	BCMS	8.05	1.20	1.4	0.9	150	0.8	(0.24, 0.31)
I III tonnot	Standard	32.50	1.80	2.0	3.00	205	1.5	(0.18, 0.30)
LIU target	BCMS	16.25	1.43	2.0	1.48	135	1.1	(0.20, 0.31)
		SPS	(Standard: 4	$4 \times 72b - I$	3CMS: $5 \times$	(48b)		
	Ν	V (10 ¹¹ p/b)	$\epsilon_{x,y}$ (µm)	p (GeV/c)	ϵ_z (eVs/b)) <i>B_l</i> (n	s) $\delta p/p_0 (10^{-1})$	$^{-3}$) $\Delta Q_{x,y}$
Ashiened	Standard	1.33	2.36	26	0.35	4.0 (3	.0) 0.9 (1.5)) (0.05, 0.07
Acmeved	BCMS	1.27	1.27	26	0.35	4.0 (3	.0) 0.9 (1.5)) (0.07, 0.12
	Standard	2.57	1.89	26	0.35	4.0 (3	.0) 0.9 (1.5)) (0.10, 0.17
LIU target	BCMS	2.57	1.50	26	0.35	4.0 (3	.0) 0.9 (1.5)) (0.12, 0.21
			LHC (≈10 injectio	ons)			
		$N (10^{11} \text{ p/})$	b) $\epsilon_{x,y}$ (µn	n) p (GeV	/c) ϵ_z (e)	Vs/b)	B_l (ns) bu	inches/train
Achiev	Standard	d 1.20	2.60	450	0.45	(0.50) 1	1.65 (1.21)	288
Acmev	BCMS	1.15	1.39	450	0.35	(0.39) 1	1.50 (1.05)	96
LILLton	Standard	4 2.32	2.08	450	0.	50	1.65	288
LIU tai	BCMS	2.32	1.65	450	0.	50	1.65	240
	** Longit	tudinal emitta	nce ϵ_{τ} (2 σ).	momentum	spread δv	$p_{0}(1\sigma)$	bunch length	
	B_l (4 σ):	values are gi	ven at inie	ction (first	turn), val	ues in pa	arentheses are	
	after fila	mentation (V	sps=4 MV.	VLHC=6 M	MV). Long	itudinal	emittances at	
SPS injection and after filamentation are the same because they are measured								
	with diffe	erent conventio	ons			and they		

LIU beam parameters table CERN EDMS : 1296306

LIU PSB meeting 09 May 2017

Time margins: measurements

LHC Injectors Upgrade

Further measurements on BT2.KFA20 needed:

- R3 and R2 have been used as they are not kicked by KFA10 (remember R3→R4→R2), so one bunch spacing has to be subtracted
- ➤ An emittance blow-up is visible due to the KFA20 ripple → the ripple must be reduced in amplitude and/or in time → HW improvement needed
- SEM-grids have small precision
- It is still possible to consider a certain margin for a clean transfer.

