Lesson learned with data.
Is there too much data?
‘Was a hot day at the data center.’

Cary Whitney
‘Data Junkie’
HEPiX KEK 2017
Oct 16th-20th
Can there be too much data?

- Actually more about; Do you know your facility?
 - The facilities people are responsible for that and they keep it going, as long as they do their job, I can do mine.
- Yes we work closely with facilities to make sure they know what our challenges are and we know what their challenges are.
- I believe the answer is yes. NERSC may be the extreme but I hope that it will convince you to consider facilities as important as any other computing resource.
Shyh Wang Hall completed June 2015

- **Four story, 150,000 GSF**
 - Two 28Ksf office floors, 300 offices
 - 20K -> 28Ksf HPC floor
 - 500 lbs/sf
 - Mechanical floor

- **42MW to building**
 - 12.5MW initially provisioned
 - WAPA power

- **Energy efficient**
 - LEED Gold
 - PUE < 1.1
 - Year-round free air and water cooling
CRT Cross Section
Air Cooling

- **Air cooling**
 - Intakes outside air, optionally cooled with tower water or heated with system exhaust
 - No chillers
 - Computer room exhaust heat used to heat office floors
 - Hot aisle containment “chimneys”

- **Specs**
 - Supply **<75°F (23.9°C)** air year round, **<70°F (21.1°C)** for 85% of year
 - 30% to 70% RH, but can change quickly
 - (3+1) x Air handling units
 - 0.5MW, 60K CFM each
 - Space for 30!
Water Cooling

• Cooling towers
 – (3+1) x 3.375MW cooling towers, with expansion to 7
 – Cooling towers operate every day

• 74°F water to racks and AHUs
 – 65°F (18.3C) water for 92% of the year
 – 65-70°F (18.3-21.1C) water for 5-6% of the year
 – 70-74°F (21.1-23.3C) water for 2-3% of the year (10 days)

• Water Consumption
 – At 7.5MW 18M gallons/year (68.1M liters)
 – At 17MW 40M gallons/year (151.4M liters)
Data Collection System

Current Data Sources
- Substations, panels, PDUs, UPS
- Cori & Edison SEDC
- Onewire Temp & RH sensors
- BMS through BACNET
- Indoor Particle counters
- Weather station

Future Data Sources
- Syslog
- Job Data
- Lustre + GFPS statistics
- LDMS
- Outdoor particle counters
- ???

Rabbit MQ, Elastic, Linux
- Collects ~20K data items per second
- Over 40TB data online (100TB capacity)
- 45 days of SEDC (versus 3 hours on SMW)
- 180 days of BMS data (6X more than BMS)
- 260 days of power data

Kibana, Grafana
One? Hot Day

• Day 1
 • What do we think we need?
• Day 2
 • What did we use? Now need?
• Day 3
 • What did we use now? Do we know what we need?
• Next Weekend
 • Throw everything out the window?
Day 1 (Record High Temperature)

Record high temperature: 105F (40.5C)
Day 1 into Day 2 (Watch supply water temp)

- Cray’s did well under watch; physical and general dashboards of data.
Day 2 to Day 3 (It's the cabinet air!)
What Does the Facilities Look Like?

- Cooling tower supply
- Wet bulb affect how effective
- Pressure difference, how well is the water flowing.
- What we supply to the computers
Following Weekend

Dashboard Row

Dashboard Row

Dashboard Row

Weather Station

Row D1 Rear Temperature
Water Supply 75F (23.9C) is critical

Why is this critical? This along with wet bulb determines how much cooling we can get from the water.
Issues: Wet bulb

66F (18.9C) is the 20 year high.
11AM to 6:45 PM

Peak 71F (21.7C)
Wet Bulb: Was there other times?

- May 3rd
- June 18th
- Aug 3rd
- Aug 25th
- Sep 2nd weekend
- Sep 10th

Lesson: Need to start watching data. Or center can handle higher wet bulb.
Lessons

• Don’t be afraid to change data requirements.
• Visualization can be tough, sometimes working through a situation can give one insight into how data should be displayed.
• The physical plant can be as complex as the compute job environment and can require many of the same skills to manage.
• The physical system may be more resilient than expected.
• Don’t become too focused on any single system.
Hot Aisle Containment

- Installing new containment system
- Drives hot air to ceiling.
- Exhaust fans suck hot air out of the building, or recirculate to temper incoming air
- Panelized system allows full access to run cables inside
What about the racks?
What happened in other parts of the floor?
Rack Air temperature responds to supply air pressure/velocity.

Increased supply air pressure/velocity.
Air Quality (Wine Country Fire)
Data Center Abatement

![Diagram of data center abatement](image)

Table 1. MERV Ratings*

<table>
<thead>
<tr>
<th>MERV Rating</th>
<th>Average Particle Size Efficiency (PSE), microns – % Removal</th>
<th>Typical Controlled Contaminant or Material Sources (ASHRAE 52.2)</th>
<th>Typical Building Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>0.3-1.0 < 1.0 < 20%</td>
<td>> 10 Microns
Textile Fibers
Dust Mites, Dust, Pollen</td>
<td>Window AC units
Common Residential
Minimal Filtration</td>
</tr>
<tr>
<td>5</td>
<td>2.0-3.0 > 20-35</td>
<td>3.0 to 10.0 Microns
Cement Dust, Mold Spores, Dusting Aids</td>
<td>Industrial Workplace
Better Residential
Commercial</td>
</tr>
<tr>
<td>8</td>
<td>3.0-4.0 > 70</td>
<td>1.0 to 2.0 Microns
Legionella, Some Auto Emissions, Humidifier Dust</td>
<td>Hospital Laboratories
Better Commercial
Superior Residential</td>
</tr>
<tr>
<td>9</td>
<td>4.0-5.0 < 50</td>
<td>0.3 to 1.0 Microns
Bacteria, Droplet Nuclei (sneeze), Most Tobacco Smoke, Insecticide Dust</td>
<td>Superior Commercial
Smoking Lounge
Hospital Care
General Surgery</td>
</tr>
<tr>
<td>12</td>
<td>5.0-6.0 > 80</td>
<td>< 0.3 Microns (HEPA/ULPA filters)
Viruses, Carbon Dust, Fine Combustion Smoke</td>
<td>Clean Rooms
Carcinogenic & Radioactive Materials, Orthopedic Surgery</td>
</tr>
<tr>
<td>13</td>
<td>6.0-7.0 > 90</td>
<td>> 99.97</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7.0-8.0 > 95</td>
<td>> 99.99</td>
<td></td>
</tr>
<tr>
<td>17**</td>
<td>8.0-9.0 > 99.97</td>
<td>< 0.3 Microns (HEPA/ULPA filters)
Viruses, Carbon Dust, Fine Combustion Smoke</td>
<td>Clean Rooms
Carcinogenic & Radioactive Materials, Orthopedic Surgery</td>
</tr>
<tr>
<td>18**</td>
<td>9.0-10.0 > 99.99</td>
<td>> 99.99</td>
<td></td>
</tr>
<tr>
<td>19, 20**</td>
<td>10.0-11.0 > 99.99</td>
<td>> 99.99</td>
<td></td>
</tr>
</tbody>
</table>

* Adapted from EPA 2009; originally from ANSI/ASHRAE Standard 52.2-2007. Not all levels are shown.

** Not part of the official ASHRAE Standard 52.2 test, but added by ASHRAE for comparison purposes.
In Room Particle Count

- **Normal Counts**
 - PM .3 - 14k
 - PM .5 - 700
 - PM 1 - 80
 - PM 5 - 4

- **Wind direction change**
- **Fire Start**
- **Dampers Closed - Recycle Air**
 - Can not rely on wind change

- **Evap cooling manually cycled**
Lessons

• Need more data. Even though we do not want to experience this again, a particle counters located outside of the filtered area would help gauge the situation.
 • We had planned for this and an extra sensor arrived Friday before I left.
• Knowledge of how the building and cooling systems worked is important.
• Can the BMS (Building Management System) be programmed to handle situations of high particle counts?
Liquid Cooling Performance Baseline

![Graph showing liquid cooling performance baseline with various data points representing different kW values at different TW supply temperatures.](image-url)
NERSC Optimization Project

• Have saved 700,000 kWh/year
 – Energy saving tradeoff:
 • Reducing water temperature by increasing CT fan speed saves pump energy by reducing cooling water demand
 – Used energy saving Eaton UPS mode
 • Dual conversion to sub-cycle online

• In progress: ~540,000 kWh/year
 – Installation of booster pump for roof-top HVAC reduces allows main pumps to run at lower speeds
 – Optimization of supply air fan speed

• Under investigation: ~600,000 kWh/year
 – Cray fan speed optimization
 – Adjust bypass valves to minimize pump energy
What if we did not have the data collect?

- Would not have been able to see that 75F (23.9C) water temperature was as critical as expected.
- Historic web bulb also not as critical.
- Particle sensors actually showed effectiveness of filters/evap cooling in outside air design.
- Amount of data providing real dollar savings for the center.
- Why? The data collect is more than just the computers, it is the whole center.
National Energy Research Scientific Computing Center