

HEPiX Benchmarking Working Group Status Report Oct 2017

Manfred Alef (KIT), Domenico Giordano (CERN), Michele Michelotto (INFN)

Mandate

HEP

Benchmarking Working Group

Fast benchmark

Estimate performance of provided job slot or VM instance

Next generation of long-running benchmark

 For installed capacities, accounting, procurements aso. (successor of HS06)

Organization

- 60 subscribers of mailing list (hepix-cpu-benchmark@hepix.org)
- Biweekly Vidyo meetings
 - \rightarrow Kick-off at HEPiX Zeuthen (Apr 2016)
 - → ~10 attendees per meeting
 - Site admins
 - Experiment representatives (Alice, Atlas, CMS, LHCb)

Status of the Working Group

Today:

- Status update since last HEPiX meeting (Apr 2017), and April GDB
 - Talks by Domenico Giordano *

* https://indico.cern.ch/event/595396/contributions/2558270/attachments/1449936/2235385/HEPiX_April_2017_benchmarking_giordano.pdf https://indico.cern.ch/event/578985/contributions/2529527/attachments/1443884/2223904/GDB_April_2017_benchmarking_giordano.pdf

4 2017-10-18 Manfred Alef et.al.: HEPiX Benchmarking Working Group: Status Report Oct 2017

Steinbuch Centre of Computing

* https://indiag.com.ch/cuent/E0E206/contributions/0EE0270/attachments/1440026/022E20E/UEDiV_April_2017_hepohemark/ing_giordan

Karlsruhe Institute of Technology

Fast Benchmark

- DIRAC Benchmark 2012 (DB12) is an attractive fast benchmark
 - Python script running for around 1 min
 - Very good correlation with Alice and LHCb jobs when running 1 benchmark copy ('DB12-in-job')
 - However, DB12 doesn't show the stability and characteristics to probe all components of the CPU potentially used by HEP workloads; e.g. the limited instruction mix doesn't stress the memory subsystem

Purpose of the 'long-running' benchmark is to measure installed and pledged compute capacities.

Hence it must scale (with a certain accuracy*) with the average WLCG job mix, but it will probably not scale with any individual job type (simulation, event generation, reproduction, ...)

* Initial objective of HS06: spread $\leq 10\%$

Next-Generation Long-Running Benchmark

- Current HS06 benchmark built on SPEC CPU2006
- New SPEC CPU2017 has been released Jun 20
 - Volunteering sites have already purchased the new benchmark suite, and they are now warming up
- Packaging Alice and Atlas reference workloads in Docker containers *
- B HS06 scaling issues have been investigated in more detail
 - 64bit temporary workaround?

* https://indico.cern.ch/event/653573/contributions/2700565/attachments/1513184/2360433/HEPiX-workload-on-docker-container.pdf

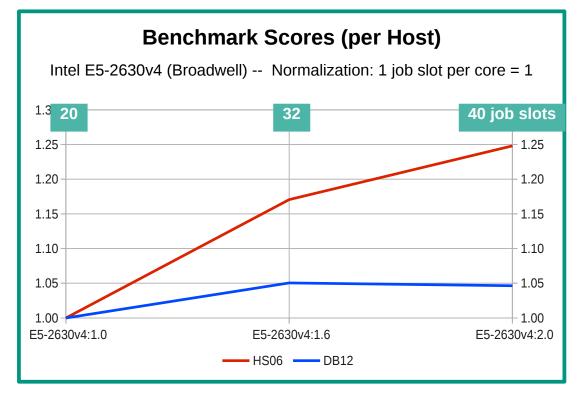
SPEC CPU2017 Benchmark Suite

- Website: www.spec.org/cpu2017/
- 43 single benchmarks
 - Integer, and floating point
 - Speed, and rate metric
 - Many benchmark names are already known from CPU2006, but CPU2017 is coming with new releases, and running improved workloads

SPEC CPU2017 Benchmark Suite

- SPECspeed and SPECrate metrics as before
 - Now different branches within the benchmark suite
 - SPECspeed: 20 benchmarks (10 integer + 10 fp)
 - SPECrate: 23 benchmarks (10 integer + 13 fp)
 - Memory requirements
 - SPECspeed benchmarks very memory-hungry (up to 16 GB), that's far too much for parallel copies as in HS06
 - SPECrate requires only 2 GB RAM per copy
- Current status:
 - Volunteering sites are warming up
 - ➔ First results at next HEPiX

- 64 bit interim solution?
 - HS06 runs with mandatory -m32 compiler flag
 - Improved scaling with -m64?
 - Nearly linear increase by around 10...20% of 64bit benchmark scores
 - Double-checked SL6 + CentOS7
 - AMD Epyc: + ~33% (when running 1 benchmark copy per core)
 - Conclusion: migration to 64 bit doesn't fix the scaling issues


- Expanding to second dimension
 - HS06 had been developed by the HEPiX Benchmarking Working Group from 2007 to 2008
 - \rightarrow Typical WN hardware at that time without Hyperthreading feature:
 - Intel: quad-core CPUs Xeon E53xx or E54xx
 - AMD: 8...16-core CPUs Opteron 23xx or 61xx
 - First servers with Hyperthreading feature (Intel E55xx) appeared on the market at the end of the project
 - Variety of WN configurations at sites
 - HT disabled
 - HT enabled, more than 1 job slot per physical core
 - ◆ E.g. ~1.5, or 2 job slots per core

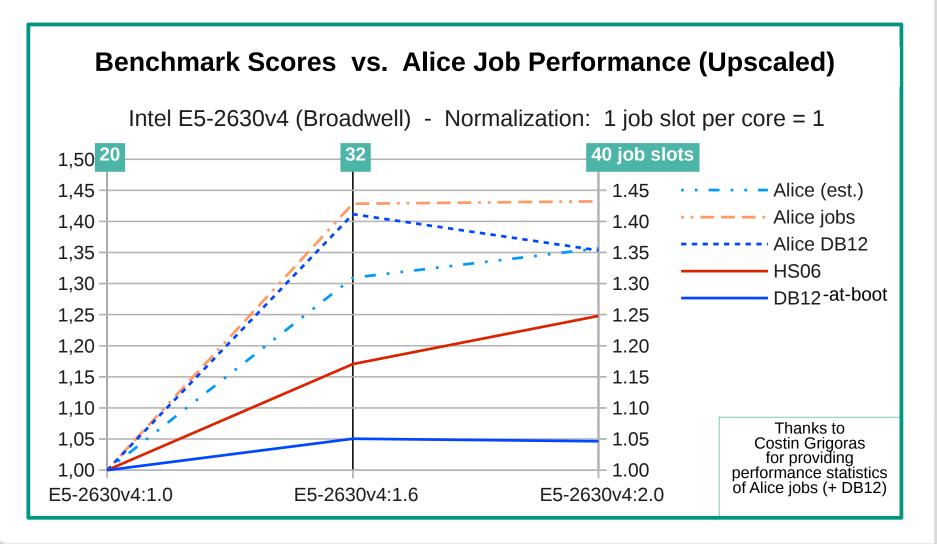
- Expanding to second dimension
 - Experiment reports, for instance at several GDB meetings, have compared different hardware models
 - Only few reports taking into account the individual WN configuration, especially the number of job slots
 - Indications that this is important too

- Expanding to second dimension
 - Discrepancies in static benchmark scores (HS06, DB12-at-boot)

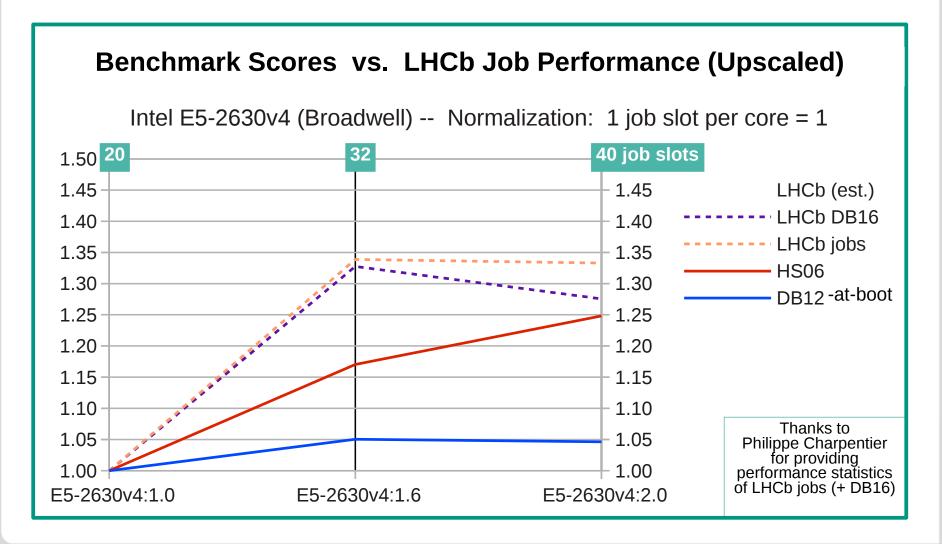
What about HEP applications?

- Expanding to second dimension
 - Deeper analysis at KIT and at PIC
 - GridKa compute farm has been reconfigured
 - Default configuration: 1.5 (or 1.6) job slots per core
 - Latest hardware model (Intel Xeon E5-2630v4, Broadwell) with 3 different configurations:
 - 1.0 job slots per core (20 slots)
 - 1.6 job slots per core (32 slots)
 - 2.0 job slots per core (1 per logical processor) (40 slots)
 - Correlations between job performance (events/s) and benchmark scores?
 - Dedicated benchmarking hosts at PIC

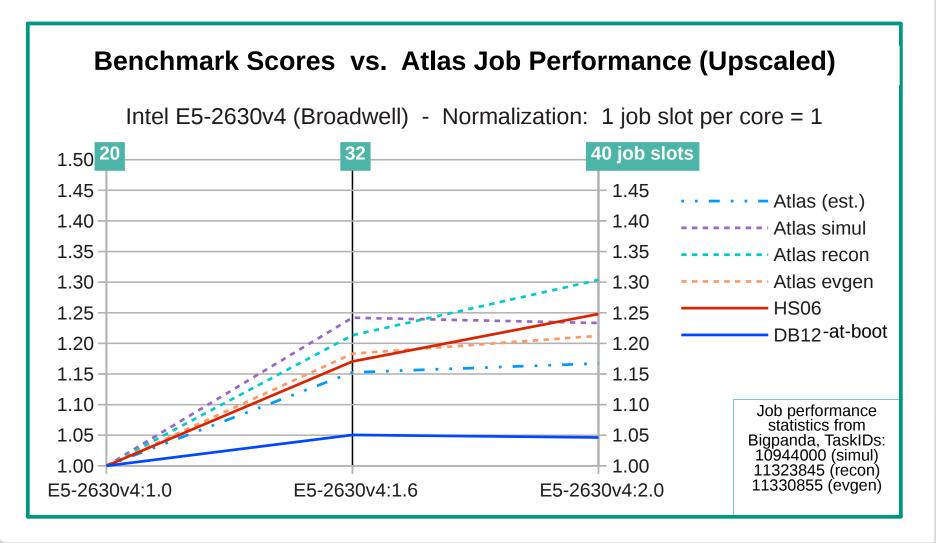
- Expanding to second dimension
 - Deeper analysis at KIT and at PIC
 - Performance results:
 - Benchmark scores (# copies == # job slots)
 - HS06
 - DB12-at-boot (MJF package)
 - Further benchmarks compared at PIC:
 - Atlas KV
 - CMS ttbar sim.

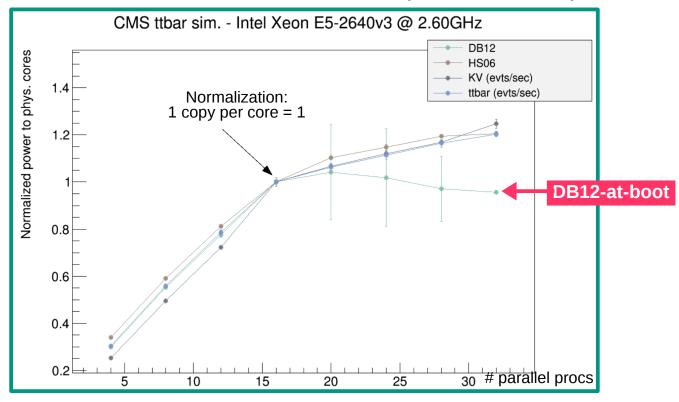


- Expanding to second dimension
 - Deeper analysis at KIT and at PIC
 - Performance results:
 - Performance of jobs run at GridKa (everyday job mix)
 - Alice (thanks to Costin Grigoras)
 - Atlas (values downloaded from Bigpanda, Tasks: simul=10944000, recon=11323845, evgen=11330855)
 - LHCb (thanks to Philippe Charpentier)
 - CMS: n.a.
 - Alice and LHCb have also reported corresponding DB12-in-job scores (running 1 benchmark copy)
 - LHCb: DB16-in-job which is the same Python script as DB12 but with a modified internal calibration factor



- Expanding to second dimension
 - Deeper analysis at KIT and at PIC
 - Performance results:
 - Job performance estimated by comparing runtime of top processes
 - Rough estimates, no high-precision accounting scores!
 - LHCb: n.a. (sophisticated autocalibrations)





CMS:

ttbar sim. at PIC on Haswell host (J. Flix et. al. *):

Estimates at GridKa similar to the Atlas ones * https://indico.cern.ch/event/624830/contributions/2576000/attachments/1454803/2244865/20170505_CMS_Benchmarking_JFlix.pdf

Summary

Fast benchmark:

- DB12 (in-job) scales with Alice and LHCb jobs
 - Runtime ~1 minute
- Long-running benchmark (HS06 + successor):
 - Not only the hardware model but also the configured number of job slots per physical core are important
 - Migration to HS06 64bit doesn't solve the issues
 - DB12-at-boot (multiple copies) is <u>not</u> a suitable candidate
 - Containerising reference workloads (Docker, CVMFS)
 - Investigating SPEC CPU2017

Steinbuch Centre of Computing