Integrating HPC and HTC at BNL – A Year Later

Tony Wong

BNL

Background

- Scientific Data & Computing Center (SDCC) formed in 2016 to leverage existing HTC expertise in the RACF to kickstart support for HPC activities
- Acquired Institutional Cluster (IC) and KNL-based cluster for HPC-based projects
- IC and KNL in stable production configuration
- Available to approved users

Expanded responsibilities...

- Traditional areas (HTC)
 - HEP and NP
 - RHIC/eRHIC
 - ATLAS
 - Belle-2
 - Intensity Frontier
 - DUNE
 - Daya Bay
 - Cosmic Frontier
 - LSST
 - Legacy projects
- New areas (HPC)
 - LQCD
 - Photon Science
 - Others

...but limited resources

- Manpower shortage
 - Hired one person in April
 - Multiple openings still unfilled
- Resource shortage
 - Current resources fully utilized
 - RHIC experiments falling behind in processing campaigns
 - Encouraged to seek resources on shared clusters at BNL and elsewhere

Fully Utilized ATLAS Farm

Existing Resources

- Dedicated
 - Custom workloads whose rigid constraints make it difficult for others to use productively
 - Legacy RHIC/ATLAS clusters
- Shared
 - HPC clusters (IC, KNL and others)
 - Recently purchased RHIC/ATLAS resources
 - New general-purpose cluster in 2018

Enabling Resource Sharing

- Integration of cyber infrastructure
 - Discussions on single sign-on to integrate distinct user bases
 - Cross-mounting of disk storage instances
 - Plan to offer access to tape storage via BNLBox
- Rethink HTCondor policy to increase productivity of RHIC/ATLAS clusters. Possibilities are:
 - Collapse multiple HTCondor pools into a single pool and expand usage of hierarchical group quota model deployed on ATLAS Tier 1
 - Increase flocking among multiple Condor pools in existing model
- HTC workloads on HPC clusters
 - Direct access for HPC-adapted workloads
 - Mechanism to submit HTCondor jobs to Slurm at BNL

Current HTCondor configuration

Possibility #1

Access to other resources (flocking, job routing, etc...)

CRS

Possibility #2

Access to other resources (flocking, job routing, etc...)

Shared Pool Others... Analysis Anatrain **PHENIX STAR CRS CRS Analysis**

Institutional Cluster (IC)

- In production since January 2017
- Original cluster with 108 nodes
 - Two Xeon E5-2695v4 (Broadwell) cpu's (36 physical cores)
 - Two Nvidia K80 gpu's
 - 256 GB RAM and ~2 TB SAS disk drive
 - Non-blocking Infiniband EDR fabric
 - 1 PB of GPFS storage with up to 24 GB/s bandwidth via EDR
- Expansion underway
 - Nvidia P100 instead of K80 gpu's
 - First batch of 18 nodes in production since September
 - Another 36 machines purchased in October
 - Full expansion by Spring 2018
- Available to HPC and HTC users

IC Usage

KNL Cluster

- Entered production in June 2017
- 144 nodes
 - One Xeon Phi 7230 cpu (1.3 GHz) with 64 physical cores and 16 GB RAM on chip
 - 2 x 512 GB high-performance SSD drives and 192 GB RAM
 - Dual-rail Intel Omni-Path interconnect fabric with 400 Gbps (nominal) peak aggregate, bi-directional bandwidth
 - Access to IC GPFS storage via custom gateway server and available to users via NFS
- Cluster in useful state, but not optimized
 - Optimization delayed for the sake of stability and availability
 - KNL heavily used by LQCD community
 - Used by ATLAS on an opportunistic basis

KNL Cluster Usage

Titan @ ORNL

Slide kindly provided by Sergey Panitkin (BNL)

- 18,688 compute nodes (299,008 logical cores) with GPU's (Cray Xk-7)
- AMD Opteron 6200 @ 2 GHz
- 32 GB RAM per node
- Nvidia K20x
- 32 PB Luster-based disk storage (1 TB/s aggregate throughput)
- 29 PB HPSS-based tape storage
- 27 Pflops peak theoretical performance

ATLAS on Titan

Slide kindly provided by Sergey Panitkin (BNL)

- Job sizes shaped to backfill opportunistically via PanDA
- Used 129M core-hours from July 2016 to June 2017
- ~2.5% of total available time on Titan
- ~10% of all US-ATLAS computing

What's Next?

- Plans to buy another cluster to be shared between HPC and HTC
 - Likely based on Skylake for ATLAS Tier-1 at BNL
 - Standard dual-socket worker node configuration
 - Add IB EDR interconnect fabric for HPC requirements
 - Available to users in early 2018
- Implement HTCondor changes to increase current RHIC/ATLAS cluster productivity
- Continue to facilitate usage of non-traditional clusters
 - Increase HTC access to HPC resources
 - Employ HPC clusters as jumping point to Leadership Class Facilities

Likely Future Direction

- Broad effort to encourage use of LCF's to meet computing needs
 - ALCF
 - NERSC
 - ORNL
- Alternative (and possibly) complementary solutions
 - Commercial providers (still in touch with Amazon and Google)
 - Academic clouds

