“Fancy” ;-) Networking

> Tristan Suerink
IT Architect
We needed to do something

> Previous network designed in 2009
> In 2012 upgraded the network
> We’ve reached the physical limits of the design
> No support for new technologies
> Building an HTC Cloud environment
> Time to replace the equipment
> Investigate long distance network technology
Traditional OPN implementation

Slide courtesy of David Groep Nikhef
Storage/Worker node network – our choice

real-time re-programming of switches to follow connected topology: “DIY SDN” using switch-native python capability

In-switch reprogramming to support LHCOPN policy based routes
Incentives for cloudification

- attract more HTC use cases beyond WLCG
 these communities prefer different OS and software suites
 … although they still like a platform service!
- dynamic scaling between GRID nodes, ex-GRID nodes, and local computing to allow short-term bursting
- easier multi-core scheduling at >95% occupancy

Slide courtesy of David Groep Nikhef
Requirements

- high-bandwidth interconnect between CPU-disk >240Gbps
- true multi-tenant security & isolation
- near-native node IO performance for disk and network (say, no less than 95%) at ~400 MByte/s and 10Gbps
- public and on-demand (elastic) IPv4+v6 connectivity
- keep dynamicity in the system (resource sharing)
- permit cross-site transparent cloud bursting
- hide infrastructure differences and latency where possible between SARA, RUG, Nikhef
Network design requirements

- Lots of 100Gbit/s ports
- 400Gbit/s ready per port
- Chassis based (8 slots)
- Deliverable in 2016

Support for:

- MPLS over UDP/GRE
- L3VPN
- EVPN
- OpenContrail
- VRFs with route-leaking
- VXLAN (as nice to have)
Possible candidates

- Arista 7500R
- Brocade SLX
- Juniper QFX10000
V Arista 7500R

> Pros:
 > One image for all Arista switches
 > Easy to configure

> Cons:
 > Very expensive
 > No real MPLS features
 > Very limited VRF features
 > Extremely small ACL table
V Brocade SLX

> Pros:
 > Not a pure Broadcom HW platform (more flexible)
 > Complete refreshed software (compared with MLX)

> Cons:
 > Very expensive
 > Focus was on L2 and L2.5 at that time
 > Missing too many features at that time
 > Too late for us
Juniper QFX10000

Pros:
> Juniper’s own very flexible ASIC
> Running JunOS
> Available since 2015
> Big tables for L2, L3 and ACL’s

Cons:
> Less dense than the other two at the moment
> Boot time could be faster
Grid Network summer 2017

- **SURFnet**: 100Gbit
- **TENET**: 20Gbit
- **Parkwachter EX9214**: 160Gbit
- **KIAE**: 20Gbit
- **SARA**: 100Gbit
- **CERN**: 20Gbit
- **Deel QFX10008**: 2 x 40Gbit
- **Deel-Switch**: 2 x 40Gbit
- **Core-Farmnet-01 7050-64**: 2 x 40Gbit
- **Core-Farmnet-02 7050-64**: 2 x 40Gbit
- **Strijker**: 2 x 40Gbit
- **Blk**: 2 x 40Gbit
- **Oliebol**: 2 x 40Gbit
- **Kip-Haas**: 2 x 40Gbit
- **Heu**: 2 x 40Gbit
- **Marsepein**: 4 x 40Gbit
- **Chocolade**: 4 x 40Gbit
- **Pepernoot**: 2 x 40Gbit
- **Tenet**: 20Gbit
- **KIAE**: 20Gbit
- **Oliebol**: 2 x 40Gbit
- **Kip-Haas**: 2 x 40Gbit
- **Heu**: 2 x 40Gbit
- **Blk**: 2 x 40Gbit
- **Deel-Switch**: 2 x 40Gbit
- **Core-Farmnet-01 7050-64**: 2 x 40Gbit
- **Core-Farmnet-02 7050-64**: 2 x 40Gbit
- **Strijker**: 2 x 40Gbit
- **Blk**: 2 x 40Gbit
- **Oliebol**: 2 x 40Gbit
- **Kip-Haas**: 2 x 40Gbit
- **Heu**: 2 x 40Gbit
- **Blk**: 2 x 40Gbit
Long distance DWDM test

- Between Amsterdam and Geneva
- Experimental DWDM equipment from Juniper
- 1618KM of fiber from SURFnet
- Using 6 wavelengths
- QPSK (100G), 8QAM (150G) and 16QAM (200G)
- From March until May 2017
Difference between QPSK and 8QAM

This is the 6x150Gbit/s

Amsterdam > Geneva

Geneva > Amsterdam
Things to know

- Long distance DWDM isn’t trivial
- Really clean your fibers! And double check them!
- We’ve missed ±3dB for 16QAM
- Up to 4000KM reach using QPSK
- The cards have the same functionality as the rest
- Separate configuration for DWDM and Ethernet side
- 8QAM mode combines 2 front ports
- The ethernet side works like multiple 100G’s
Questions?

- Couldn’t do the DWDM tests without the help from:
 - CERN: Eduardo and John
 - SURFnet: Rob, Marcel, Pieter and Lucas
 - Juniper: Dirk, Vincent, Washid and Roberto
 - NIKHEF: Erwin, David, Dennis and Floris

- Thank you all!
Backup slide

- We want to be flexible with our resources
- Keep our high speed interconnect
- Tenant cloud based networks
- Stateless networking
- Office enclave integrated with HTC
- Technology shift within the market
- Overlay networking into the hypervisor
- Using standard network technology
- ScienceDMZ is not enough
- Neutron and Openflow doesn’t work in production
We want to be flexible with our resources.
Keep our high speed interconnect.
Tenant cloud based networks.
Stateless networking.
Office enclave integrated with HPC.
Technology shift within the market.
Overlay networking into the hypervisor.
Using standard network technology.
ScienceDMZ is not enough.
Neutron and Openflow doesn’t work in production.

Contrail Networking – DC to WAN

L2 cloud bursting: connecting services with MSPs and WDM

Extending the MPLS fabric across SURFnet MSPs, Netherlight, or Alien Waves

Slide courtesy of David Groep Nikhef

Graphic: SURFnet 7 DWM, SURFnet
‘NiKloud’ – a DNI service in coordination with SURF

- Hybrid cluster, storage and network omgeving
- IP Fabric
- Overlay using VXLAN/MPLS
- 10/25Gbit connection per worker node
- 40/50Gbit connection per storage node
- multiple 100Gbit per cluster; and multi-Tbit/s basenetwork
- Hardware offloading d.m.v. DPDK on the worker nodes
- ‘Helicopter’ control via OpenContrail (NFV)
- Strict isolation of tenants – but unlimited connectivity
- ‘The power to the user’