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Interesting physics expected IF B lives long
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Naively, the life time of B is very short
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Figure 10. Left: Collision geometry seen from the above. Right: Profile of the
produced magnetic field as a function of time.

4. Strong Magnetic Field and Dimensional Reduction

In the heavy-ion collision with a finite impact parameter (i.e. peripheral collision) a

magnetic field is created by the positively charged ions moving at almost the speed of

light. Let us evaluate how large magnetic field is expected in the collision at the RHIC

energy in a classical manner. For simplicity we assume that the (positively charged)

heavy ions are point charges [147]. The collision geometry is schematically modelled as

in the left of figure 10. Then, from the Liénard-Wiechert potential, the magnetic fields

at the origin reads

eB(x, t) =
Ze2

4π
· bβ(1− β2)ey

[(βt)2 + (1− β2)(b/2)2]3/2
= eB0

ey

[1 + (t/t0)2]3/2
, (54)

eB0 =
8Zαe

b2
sinh(Y ) = (47.6 MeV)2

(1fm
b

)2

Z sinh(Y ) ,

t0 =
b

2 sinh(Y )
.

In the definition of B0 and t0 we use the beam rapidity Y instead of the velocity β,

which is related by β = tanh(Y ). Here, B0 is the maximum strength of the magnetic

field and t0 gives a typical time scale of decaying field. In the case of Au-Au collision

at the RHIC energy, these parameters are

Z = 79 , sinh(Y ) ≃ cosh(Y ) =

√
sNN

mN
≃ 106.6 . (55)

The point-charge approximation is valid when the collision is far peripheral. So, let us

take b = 10 fm [147]. Then, this simple estimate leads to

eB0 ≃ 1.9× 105 MeV2 = 3.2× 1019gauss , t0 ≃ 0.05 fm/c . (56)

This magnetic field strength is 104 times larger than the surface magnetic field of the

magnetar, and 107 times larger than that of the ordinary neutron star. Although such a

strong field is transient and decays with the time scale t0, we note that the decay is not

as steep as exponential damp but power-law suppression. At t/t0 ∼ 2 ∼ 0.1 fm/c, for

example, the magnetic field diminishes to a tenth of B0. We note that this time scale is

of order of Q−1
s where Qs is the saturation scale at RHIC [148, 149, 150]. Although there
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Figure 1: Magnetic field for static medium with Ohmic conductivity, �Ohm.

The total magnetic helicity

H =

Z

V
d3x ~A ~B (15)

is conserved for the closed systems. For two fluxes of the magnetic field �1 and
�2, the helicity can be related to the linking number H = 2n�1�2. Substituting
Eq. (14) to Eq. (15) and performing trivial transformations we obtain for the
helicity

H� = � 1

��

Z

V

~B2d3x = �8⇡

��
EB , (16)

where EB is the total magnetic energy. This shows that conservation of the
helicity leads to the conservation of the total magnetic energy for the processes
with the timescales, tc ⌧ 1/��. The volume V in Eq. (16) is defined by the
region of space, where �� 6= 0. Owing to the expansion of the medium this
volume grows in time roughly as t3 for late times, as t for early times. Therefore
we expect the magnetic field to decay according to the power law B ⇠ t�3/2

or B ⇠ t�1/2 . This is somewhat slower then the decay of the field induced
by the spectators Bspect ⇠ t�2. This conclusion, however, does not take into
account the formation of non-trivial topological objects, knots of the magnetic
field with non-trivial linking number. As was shown in Ref. [8], the higher
the linking number corresponds to longer lifetime of the magnetic field up to
Bn ⇠ t�1/6. Returning to the constraint �� � 1/tc, we can roughly estimate
if this is satisfied in heavy ion collisions. The chiral conductivity is defined by

4

McLerran-Skokov (2013)

Electric conductivity s 
crucial for the fate of B

s affected by strong B ? 
Maybe larger at finite µ ?

However, lowest Landau  
level approximation is  
NOT good due to phase 
space restriction

(Hattori-Satow-Li-Yee 2016)
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interaction gets weaker with larger B, can overcome the
magnetic catalyzing e↵ect (see Ref. [22] for a review
and references therein). Such behavior of the interaction
weakened by stronger B may well be consistent with the
asymptotic freedom of QCD if the relevant scale is given
by

p
eB [23, 24]. In other words, the inverse magnetic

catalysis might be a consequence from the confining sec-
tor in which B eases QCD particles of confining forces.
An alternative scenario called the magnetic inhibition is
rather closed in the chiral sector. If the magnetic field is
large enough, the energy dispersion of ⇡0 is also dimen-
sionally reduced, which would destruct the chiral order
especially at finite T [25]. There are also bag-model anal-
yses of thermodynamic phase transitions with B [26].

Inverse Magnetic Catalysis with the Hadron Resonance
Gas Model: None of these model scenarios has been
fully justified nor falsified and all of them su↵er model-
dependent assumptions. Fortunately, however, we have
another theoretical tool, that is, the hadron resonance
gas (HRG) model, which is free from parameter ambigu-
ities. At zero magnetic field (B = 0) and zero baryon
chemical potential (µ

B

= 0) it has been well tested that
the HRG model reproduces the lattice-QCD data very
nicely up to the crossover temperature where the HRG
thermodynamic quantities such as the pressure, the in-
ternal energy density, and the entropy density blow up
(which is regulated by excluded volume e↵ects [27] that
may be important at high temperatures). Interestingly,
such a simple picture of the HRG model has been verified
also from the success of thermal model fit of experimental
data in the heavy-ion collision. In this way the chemical
freezeout points have been located on the phase diagram
on the µ

B

-T plane (see Ref. [28] for a summary of ther-
mal model implications and Ref. [29] for recent studies
on fluctuations to locate the chemical freezeout points).

It has been known that several thermodynamic condi-
tions imposed with the HRG model can reproduce an
experimentally identified curve of the chemical freeze-
out [30, 31]. Among them a physically reasonable con-
dition is E/N = "/n ' 1 GeV where E (and ") is the
internal energy (density) and N (and n) is the thermal
particle number (density) [30]. Here, N counts not only
baryons but also mesons and anti-particles. Therefore,
the chemical freezeout supposedly occurs when the aver-
age energy per one thermal degrees of freedom (i.e. the
rest mass plus thermally distributed energy ⇠ m + 3

2

T
for non-relativistic heavy particles) crosses ⇠ 1 GeV. In
Fig. 1 we show bands (with slanting lines) of the chemical
freezeout using the HRG model in the range of E/N =
0.9 ⇠ 1.0 GeV with and without the magnetic field. We
note that E and N are obtained from the HRG pres-
sure given by a superposition of all hadronic (bosonic and
fermionic) contributions, i.e. p =

P
b db · pb +

P
f df · pf

with the degeneracy db/f and the free-gas pressure pb/f .
For the finite magnetic field the pressures of q-charged

FIG. 1. Chemical freezeout bands drawn in the range of
E/N = 0.9 ⇠ 1.0 GeV with and without the magnetic field.
The bands with slanting lines represent results with the charge
conservation taken into account, while the shaded bands rep-
resent results with µQ = µS = 0 fixed.

s-spin hadrons are changed as

pb/f = ±T
sX

sz=�s

1X

n=0

qB

2⇡

Z
dpz
2⇡

ln(1± e�(E�µiQi)/T ) ,

(1)
with µiQi collectively represents µ

B

QB + µ
S

QS + µ
Q

Qe

with the baryon charge, the strangeness, and the electric
charge of the particle, respectively, and corresponding
chemical potentials. The energy dispersion relation is
E(pz, n, sz) =

p
p2z + 2|qB|(n+ 1/2� sz). We note that

the divergence from the zero-point oscillation is absorbed
in the renormalized magnetic field in the vacuum [32].
In this work we are interested in hadronic thermody-
namics that is relevant to the freezeout, and thus can
safely discard the magnetic field energy terms. Also,
it would be useful to mention that eB (or qB in the
above expression) is a renormalization free combination.
In our HRG model treatment we have adopted the par-
ticle data group list of particles contained in the package
of THERMUS-V3.0 [33] (we used only the list and wrote
our own numerical codes). We should note that we have
introduced the strangeness and the electric charge chem-
ical potentials, µ

S

and µ
Q

, to implement the conserva-
tion laws of strangeness and electric charge for the entire
system. More specifically, µ

S

and µ
Q

should take finite
values to realize NS = 0 and B/(2Q) = 1.2683 where
B and Q represent the baryon number and the electric
charge number, respectively, which is for cold nuclear
matter (N

proton

+N
neutron

)/2N
proton

and 1.2683 is fixed
for heavy nuclei by the �-equilibrium with the Coulomb
interaction.
The boundaries of the freezeout band (indicated by red

lines for B = 0 and green lines for B 6= 0 in Fig. 1) can
be parametrized as a function of µ

B

in the polynomial
form as T

f

(µ
B

) = a� bµ2

B

� cµ4

B

. Then, we find that the
choice of parameters as listed in Tab. I can give a good fit
for the curves in Fig. 1. In fact, for B = 0, these values

3

a [GeV] b [GeV�1] c [GeV�3]

B = 0, E/N = 0.9 GeV 0.1519 0.1347 0.05976

B = 0, E/N = 1.0 GeV 0.1618 0.1367 0.04705

eB=(0.5GeV)2, E/N=0.9GeV 0.1418 0.1253 0.1849

eB=(0.5GeV)2, E/N=1.0GeV 0.1555 0.1362 0.0565

TABLE I. Chemical freezeout parameters for E/N = 0.9 GeV
and 1 GeV with and without the magnetic field.

determined from the E/N condition with the HRGmodel
are consistent with the results, a = 00.166± 0.002 GeV,
b = 0.139± 0.016 GeV�1, and c = 0.053± 0.021 GeV�3,
fitted directly with the experimental data [31].

Hereafter we will take the strength of the magnetic field
as eB = (0.5 GeV)2 which may look a bit optimistic esti-
mate but could possibly be sustained with back-reaction
or even strengthened by ferromagnetism of high density
matter. The condition of E/N with eB = (0.5 GeV)2

leads to a band shifted down to a lower temperature as
shown by green lines in Fig. 1. This clearly means that
the HRG model certainly encompasses the inverse mag-
netic catalysis as observed by the chiral condensate in the
lattice-QCD simulation. For a quantitative comparison
we point out that the temperature shift in our results in
0.006 ⇠ 0.01 GeV as read from Tab. I and that in the
lattice-QCD simulation [18] is 0.005 ⇠ 0.01 GeV at the
same magnetic field depending on the pseudo-criticality
prescriptions. We note that Ref. [32] already addressed
how the HRG model can explain the (inverse) magnetic
catalysis, but we should emphasize that it is non-trivial
how the HRG model and the inverse magnetic catalysis
would a↵ect the freezeout curves. One would immedi-
ately understand this from the shaded bands in Fig. 1.
The inverse magnetic catalysis implies that both E and
N rapidly grow up at a lower temperature with stronger
B, but it is not obvious which increases faster. Actually,
if the baryon number density is large, the system is dom-
inated by nucleons, so that N (or the proton influenced
by B directly) increases faster. Thus, if the charge con-
servation is not imposed at high µ

B

, the chemical freeze-
out curve as determined by a contour at constant E/N
should be pushed upward to a higher temperature by
the B e↵ect, which is indicated by the shaded bands in
Fig. 1. Below, we will discuss the e↵ect of the charge
conservation in more details.

Conservation Laws and Electric Charge Fluctuation:
Now that we have identified the chemical freezeout curves
on the phase diagram, we can estimate physical quan-
tities along them predicting what should be seen in
the experiment. Our central message here is that the
fluctuation of electric charge is quite sensitive to the
presence of B 6= 0, where the (dimensionless) electric
charge fluctuation or susceptibility is defined as �Q =
T�2@2p/@µ2

Q

[34]. Figure 2 summarizes our results using
the HRG model with and without B and with and with-
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FIG. 2. Electric charge susceptibility along the chemical
freezeout lines, on which the location is indicated as a function
of µB, with and without B. The bands with slanting lines rep-
resent results with the charge conservation taken into account,
while the shaded bands represent results with µQ = µS = 0
fixed.

out the charge conservation. The red band with slanting
lines represents �Q at B = 0 and the band width cor-
responds to that in Fig. 1 with two freezeout conditions
E/N = 0.9 GeV and 1 GeV. The green band with slant-
ing lines represents �Q at eB = (0.5 GeV)2. A magnetic
field increases �Q even at µ

B

= 0, which is testable in
the lattice QCD simulation (see Ref. [35] for results con-
sistent with our present calculation).

At larger µ
B

there are more neutrons and protons in
the system. To keep the ratio, B/(2Q) = 1.2683, as fixed
by the �-stability of heavy nuclei, we should introduce a
negative isospin chemical potential or a negative charge
chemical potential µ

Q

< 0. As long as the isospin sym-
metry approximately holds at B = 0, the charge chemi-
cal potential µ

Q

remains of order of ⇠ 0.01 GeV even at
µ
B

⇠ 0.6 GeV as seen from µ
Q

[B = 0] in Fig. 3. There-
fore, for B = 0, it should be an acceptable approximation
to neglect the e↵ect of the electric charge conservation
at all. However, the strangeness conservation must be
properly implemented with µ

S

, which is clearly under-
stood from µ

S

[B = 0] in Fig. 3. Actually, for B = 0 and
around T ⇠ 0.2 GeV, we have found µ

S

⇠ µ
B

/3 (= quark
chemical potential) as expected in the deconfined phase.
(We note that the realization of µ

S

⇠ µ
B

/3 is physically
natural, but highly non-trivial in the HRG model because
there is no quark degrees of freedom explicitly contained
in the model.) Because strange quarks have S = �1, the
total chemical potential felt by strange quarks becomes
vanishing for µ

S

= µ
B

/3.

Let us consider what happens for a strong-B situation.
Naturally, the isospin symmetry is explicitly broken, and
because the phase-space density is proportional to the
Landau degeneracy factor eB/(2⇡) the proton density is
more favored than the neutron density as B increases.
Then, there are more protons in the system, causing

HRG model with B 
* Inverse magnetic catalysis 
* Enhanced charge fluctuations

Density → More protons 
B → Lighter protons

Natural to anticipate enhanced electric conductivity ?



October 11, 2017@ CCNU, Wuhan

Conclusion First

6

Single flavor (with unit charge; Cem=1)

Lattice (Ding et al. 2010)

We assume: T &
p

qB � gT (thermal screening neglected)
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LLLA is not good (massless quarks  
cannot scatter in (1+1) D), but  
Next-to-LLLA (NLLLA) is very good  
(convergence is pretty fast)

Results are surprisingly close to (quenched) lattice estimates
B and µ dependence mild ?  →  Yes !?

Figure 6. Density dependence.
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given by the Kubo formula as follows:

�ij = lim
k0!0

lim
k!0

1

2ik0

⇥

⇧ij
R(k) � ⇧ij

A(k)
⇤

, (2.1)

where ⇧µ⌫
R (k) and ⇧µ⌫

A (k) are the retarded and advanced polarization functions, respectively,
defined by

⇧µ⌫
R (k) := i

Z

d4x eik·x ✓(t)
⌦

[jµ(x), j⌫(0)]
↵

, (2.2)

⇧µ⌫
A (k) := �i

Z

d4x eik·x ✓(�t)
⌦

[jµ(x), j⌫(0)]
↵

(2.3)

with the electric current jµ. Precisely speaking, jµ in the Kubo formula for the electric
conductivity is not the electric current jiem itself but jiem � n0T

0i/(E + Pi) with the energy
momentum tensor Tµ⌫ , the density n0, the energy density E := hT 00i, and the pressure
Pi := hT iii. This subtraction ensures the removal of inferred divergence caused by the
hydrodynamic mode. In our calculation, for the moment, we will discard this subtraction
until the calculation of the longitudinal electric conductivity.

In QCD with multiple quark flavors the electric current is a sum of contributions from
all flavors f , i.e.,

jµ =
X

f

qf  ̄f�
µ f . (2.4)

The external magnetic field makes the electric conductivity anisotropic in space. We de-
compose this anisotropic tensor structure using B̂i := Bi/|B| as

�ij = �H ✏ijkB̂k + �k B̂iB̂j + �? (�ij � B̂iB̂j) , (2.5)

where �H represents the Hall conductivity for an electric current perpendicular to both B

and an imposed electric field. Without loss of generality we can identify the magnetic field
direction with the z axis, so that we explicitly denote the longitudinal and the transverse
conductivities as �k = �33 and �? = �11 = �22.

It is useful to express the above physical quantities in terms of ± coordinates, that is,

j± =
1

2
(j1 ± ij2) , (2.6)

and

��+ =
1

2
(�? + i�H) . (2.7)

We can readily confirm that other components are vanishing, i.e., �++ = ��� = 0. Then,
we do not have to compute �? and �H separately but what we need is only ��+.

For our calculation we adopt the real-time Schwinger-Keldysh formalism in the R/A

basis. The propagators in the R/A basis and the standard ones on the Schwinger-Keldysh

– 3 –
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Tensor Decomposition

given by the Kubo formula as follows:

�ij = lim
k0!0

lim
k!0

1

2ik0

⇥

⇧ij
R(k) � ⇧ij

A(k)
⇤

, (2.1)

where ⇧µ⌫
R (k) and ⇧µ⌫

A (k) are the retarded and advanced polarization functions, respectively,
defined by

⇧µ⌫
R (k) := i

Z

d4x eik·x ✓(t)
⌦

[jµ(x), j⌫(0)]
↵

, (2.2)

⇧µ⌫
A (k) := �i

Z

d4x eik·x ✓(�t)
⌦

[jµ(x), j⌫(0)]
↵

(2.3)

with the electric current jµ. Precisely speaking, jµ in the Kubo formula for the electric
conductivity is not the electric current jiem itself but jiem � n0T

0i/(E + Pi) with the energy
momentum tensor Tµ⌫ , the density n0, the energy density E := hT 00i, and the pressure
Pi := hT iii. This subtraction ensures the removal of inferred divergence caused by the
hydrodynamic mode. In our calculation, for the moment, we will discard this subtraction
until the calculation of the longitudinal electric conductivity.

In QCD with multiple quark flavors the electric current is a sum of contributions from
all flavors f , i.e.,

jµ =
X

f

qf  ̄f�
µ f . (2.4)

The external magnetic field makes the electric conductivity anisotropic in space. We de-
compose this anisotropic tensor structure using B̂i := Bi/|B| as

�ij = �H ✏ijkB̂k + �k B̂iB̂j + �? (�ij � B̂iB̂j) , (2.5)

where �H represents the Hall conductivity for an electric current perpendicular to both B

and an imposed electric field. Without loss of generality we can identify the magnetic field
direction with the z axis, so that we explicitly denote the longitudinal and the transverse
conductivities as �k = �33 and �? = �11 = �22.

It is useful to express the above physical quantities in terms of ± coordinates, that is,

j± =
1

2
(j1 ± ij2) , (2.6)

and

��+ =
1

2
(�? + i�H) . (2.7)

We can readily confirm that other components are vanishing, i.e., �++ = ��� = 0. Then,
we do not have to compute �? and �H separately but what we need is only ��+.

For our calculation we adopt the real-time Schwinger-Keldysh formalism in the R/A

basis. The propagators in the R/A basis and the standard ones on the Schwinger-Keldysh
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Figure 2. Illustration of the Bethe-Salpeter equations; the resummed propagator with self-energy
insertions (left) and the resummed vertex with ladder diagrams (right).

the two loop diagrams which are quite complicated and such a higher order calculation is
beyond our present scope. Here, we just give a parametric estimate, that is,

�?
T

⇠ g2T 2

|qB| , (3.11)

which is small in our condition of
p

|qB| � gT .
This parametric form can be understood from one self-energy insertion of ⌃ to one of

the fermion propagators, i.e., in the two-loop order the left-hand side of Eq. (3.7) should
be replaced with

lim
k?!0

tr
⇥

��Sf
n(p + k)�+Sf

m(p)⌃f (p)Sf
l (p)

⇤

. (3.12)

The leading behavior of the self-energy is ⇠ g2T , while the propagator is of order 1/�" ⇠
T/|qB|. Thus, the combination of these factors leads to g2T · T/|qB| = g2T 2/|qB|.

4 Longitudinal conductivity

Next, we calculate the longitudinal conductivity. To this end we must take account of
the resummation over pinching singularities, which is a common technique used also for
transport coefficient calculations (see calculations in Ref. [14] for example). The pinching
singularities generally appear from the following type of integral,

Z

dk0
(2⇡)

F (k0) · 1

k0 � " + i�
· 1

k0 � " � i�
⇠ F (")

2�
. (4.1)

A typical contribution to the leading order calculation is diagrammatically shown in
Fig. 1. An efficient approach to generate such diagrams is solving the Bethe-Salpeter
equations, as illustrated schematically in Fig. 2. We can easily confirm that a diagram like
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Pinch singularities must be avoided by resummation

Higher order diagrams generated by

Fig. 1 is produced by the self-energy insertion and the resummed vertex described by the
processes in Fig. 2. In this section we will elucidate the calculation of �k in details.

4.1 Boltzmann equations

The Bethe-Salpeter equations can be translated to the linearized Boltzmann equations with
the collision term of 1 $ 2 scattering. The corresponding Boltzmann equations are given
as

2Pµ
p

�

@µ + qfF⌫µ@p⌫
�

fp = �C[f ]

2P̄µ
p0
�

@µ � qfF⌫µ@p0⌫
�

f̄p0 = �C̄[f ]

2kµ@µgk = �C̃[f ]

(4.2)

where @p⌫ := @/@p⌫ and C[f ], C̄[f ], and C̃[f ] represent the collision terms. We introduced
notations, 2Pµ

p := ū(p)�µu(p) and 2P̄µ
p0 := v̄(p0)�µv(p0), with the wave functions u(p) and

v(p0) for particle and anti-particle, respectively. For these expressions we use a sloppy
notation for the indices; the subscript p, p0, and k represent not only the momenta but also
the Landau level n, the angular momentum l, the spin s, the color c, and the flavor f .

To solve the Boltzmann equation perturbatively, we expand the distribution functions
around the thermal equilibrium, feq(p) = nF ("fn�µf ), f̄eq(p) = nF ("fn+µf ), and geq(k) =

nB(!k), in response to an external perturbation, where !k = |k| is the energy of gluons.
In the present problem we are interested in the longitudinal conductivity, so we should
consider a homogeneous electric field Ez parallel to the z axis as the external perturbation.
In the linear order of Ez we can plug feq, f̄eq, and geq for fp, f̄p0 , and gk in the left-hand
side of the Boltzmann equations (4.2), which yields

2P 0
p

�

@0 + qfEz @pz
�

fp = ��Wp

⇣

qfEz
pz
"fn

� pz@0uz

⌘

,

2P 0
p0
�

@0 � qfEz @p0z
�

f̄p0 = ��W̄p0

⇣

�qfEz
p0z

"fn0
� p0z@0uz

⌘

,

2!k @0gk = ��W̃k(�kz@0uz) ,

(4.3)

where uz is the z component of fluid velocity. We assumed homogeneity and no current
flow of x and y directions. We also introduced the following functions:

Wp := 2P 0
p feq(p)[1 � feq(p)] , (4.4)

W̄p0 := 2P 0
p0 f̄eq(p

0)[1 � f̄eq(p
0)] , (4.5)

W̃k := 2!k geq(k)[1 + geq(k)] , (4.6)

which will be used as the weight functions in the inner product. We can make use of the
leading order hydrodynamic equation, @0uz = n0Ez/(E+Pz), to eliminate the fluid velocity.
Here, E is the energy density and Pz is the pressure in the z direction, which are defined,
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Figure 3. Diagrams of the radiation process with a quark (a1) and a anti-quark (b1), the pair
annihilation (c1), and their inverse processes, (a2), (b2), and (c2).

process ⇠ g4, we only take into account 1 to 2 and 2 to 1 processes. There are several
distinct contributions, i.e.,

C[f ] = Cq!qg[f ] + Cqg!q[f ] + Cqq̄!g[f ] ,

C̄[f ] = C̄q̄!q̄g[f ] + C̄q̄g!q̄[f ] + C̄qq̄!g[f ] ,

C̃[f ] = C̃g!qq̄[f ] + C̃qg!q[f ] + C̃q̄g!q̄[f ] ,

(4.21)

where the subscripts represent each processes illustrated in Fig. 3.
Once the scattering amplitude M is given (which we will compute later), the kinemat-

ical assignments of the distribution functions lead to the following expressions:

Cq!qg[f ] =

Z

k,p0
|Mp!p0+k|2(2⇡)4�(4)(p�k�p0)

h

fp(1�fp0)(1+gk) � (1�fp)fp0gk
i

, (4.22)

Cqg!q[f ] =

Z

k,p0
|Mp+k!p0 |2(2⇡)4�(4)(p+k�p0)

h

fpgk(1�fp0) � (1�fp)(1+gk)fp0
i

, (4.23)

Cqq̄!g[f ] =

Z

k,p0
|Mp+p0!k|2(2⇡)4�(4)(p+p0�k)

h

fpf̄p0(1+gk) � (1�fp)(1�f̄p0)gk
i

, (4.24)

for quarks and

C̄q̄!q̄g[f ] =

Z

k,p0
|Mp!p0+k|2(2⇡)4�(4)(p�k�p0)

h

f̄p(1�f̄p0)(1+gk) � (1�f̄p)f̄p0gk
i

, (4.25)

C̄q̄g!q̄[f ] =

Z

k,p0
|Mp+k!p0 |2(2⇡)4�(4)(p+k�p0)

h

f̄pgk(1�f̄p0) � (1�f̄p)(1+gk)f̄p0
i

, (4.26)

C̄qq̄!g[f ] =

Z

k,p0
|Mp+p0!k|2(2⇡)4�(4)(p+p0�k)

h

f̄pfp0(1+gk) � (1�f̄p)(1�fp0)gk
i

, (4.27)

for anti-quarks and

C̃g!qq̄[f ] =

Z

p,p0
|Mk!p+p0 |2(2⇡)4�(4)(k�p�p0)

h

gk(1�fp)(1�f̄p0) � (1+gk)fpf̄p0
i

, (4.28)

C̃qg!q[f ] =

Z

p,p0
|Mk+p!p0 |2(2⇡)4�(4)(k+p�p0)

h

gkfp(1�fp0) � (1+gk)(1�fp)fp0
i

, (4.29)

C̃q̄g!q̄[f ] =

Z

p,p0
|Mk+p0!p|2(2⇡)4�(4)(k+p0�p)

h

gkf̄p0(1�f̄p) � (1+gk)f̄p(1�f̄p0)
i

, (4.30)

for gluons. Here, fp, f̄p0 , and gk represent the quark, the anti-quark, and the gluon distri-
bution functions with quantum numbers p, p0, and k, respectively.

– 11 –

Solve the Boltzmann equations for given collision terms

Expand distribution f around thermal equilibrium feq

Linear deviation d f proportional to external E

respectively, as

E := Nc
X

f,n

↵n
|qfB|
2⇡

Z

dpz
2⇡

"fn
⇥

feq(p) + f̄eq(p)
⇤

+ 2(N2
c � 1)

Z

d3k

(2⇡)3
!k geq(k) , (4.7)

Pz := Nc
X

f,n

↵n
|qfB|
2⇡

Z

dpz
2⇡

p2z
"fn

⇥

feq(p) + f̄eq(p)
⇤

+ 2(N2
c � 1)

Z

d3k

(2⇡)3
k2
z

!k
geq(k) . (4.8)

The inside of the last brackets in the right-hand side of Eq. (4.3) is expressed as
⇥

J z �
n0/(E + Pz)T 0z

⇤

Ez, where we defined the current and the momentum vectors by

J µ := qf

0

B

@

pµ/"fn
�p0µ/"fn0

0

1

C

A

, T 0µ :=

0

B

@

pµ

p0µ

kµ

1

C

A

. (4.9)

Let us next turn to the collision terms in the right-hand side, for which perturbative fluc-
tuations around the equilibrium distribution functions are important. We denote these
fluctuations as fp = feq(p) + �fp, f̄p0 = f̄eq(p0) + �f̄p0 , and gk = geq(k) + �gk. Because these
deviations are driven by Ez, it would be a natural parametrization to set

�fp = �feq(p)[1 � feq(p)] Ez �p ,

�f̄p0 = �f̄eq(p
0)[1 � f̄eq(p

0)] Ez �̄p0 ,

�gk = �geq(k)[1 + geq(k)] Ez �̃k .

(4.10)

Then, we can write the Boltzmann equation symbolically as

S = L� , (4.11)

where S := J z � T 0z/(E + Pz), and we defined � using �p, �̄p0 , and �̃k as

� :=

0

B

@

�p

�̄p0

�̃k

1

C

A

. (4.12)

What we are going to do below is to obtain � by solving the above Boltzmann equation.
In Eq. (4.11), L represents a linear operator acting on � which is defined by

L� :=
1

Ez

0

B

B

B

B

B

@

1

�Wp
C[f ]

1

�W̄p0
C̄[f ]

1

�W̃k

C̃[f ]

1

C

C

C

C

C

A

. (4.13)

We will see more concrete and explicit expressions for the collision operator in the next
subsection.

Now, before getting �, let us explain how we compute the longitudinal conductivity
from obtained �. The electric current parallel to B along the z axis reads

jz = �kEz =

Z

p
2P 3

p qf
�

�fp � �f̄p
�

= Nc
X

f

qf |qfB|
2⇡

1
X

n=0

↵n

Z

dpz
2⇡

pz
"fn

�

�fp � �f̄p
�

, (4.14)
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Z
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i

, (4.22)
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for quarks and
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for anti-quarks and
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i

, (4.30)

for gluons. Here, fp, f̄p0 , and gk represent the quark, the anti-quark, and the gluon distri-
bution functions with quantum numbers p, p0, and k, respectively.
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Express a current associated with E
where we introduced a compact notation to take the summation over all phase space and
degrees of freedom as follows:

Z

p
:=

X

n,l,c,s,f

Z

d3p

(2⇡)3
1

2"fn
. (4.15)

Here, we used a sloppy notation for the sum with respect to n. In the above the Landau
degeneracy factor |qfB|/(2⇡) and the spin degeneracy factor ↵n should be implicitly under-
stood. In later sections we will often use this compact notation. Plugging the parametriza-
tion (4.10) into this expression of jz, we get the following formula for the conductivity,

�k = �Nc
X

f

qf |qfB|
2⇡

1
X

n=0

↵n

Z

dpz
2⇡

pz
"fn

n

feq(p)[1 � feq(p)]�p � f̄eq(p)[1 � f̄eq(p)]�̄p

o

.

(4.16)
The remaining task is thus to solve � = L�1S; however, L contains five zero eigenvalues with
the eigenvectors, Ca = {J 0, T 0µ}, corresponding to the charge and the energy-momentum
conservations. Therefore we must project these zero modes out to take the inversion of L.

To formulate the projection procedure, let us introduce an inner product for two func-
tions, A = (ap, āp0 , ãk) and B = (bp, b̄p0 , b̃k), as follows,

(A, B) :=

Z

p
Wp apbp +

Z

p0
W̄p0 āp0 b̄p0 +

Z

k
W̃k ãk b̃k . (4.17)

It is then easy to rewite Eq. (4.16) as

�k = �(Jz, �) , (4.18)

using Eq. (4.9). Now, with the zero eigenvectors C and the inner product, we define a
projection operator onto functional space excluding zero eigenvalues as

QO = O �
X

a,b

Ca(C, C)�1
ab (Cb, O) , (4.19)

where (C, C)�1
ab is the inverse matrix of (Ca, Cb). We see Q2 = Q and QCa = 0 by

construction. Using an alternative expression of the charge density and the enthalpy,
n0 = �(T 0z, J z) and E + Pz = �(T 0z, T 0z) [15], we can write S = QJ z. Noting L = LQ,
we find the formal solution of L� = S as � = QL�1QS, where QL�1Q satisfies a relation
LQL�1Q = Q. We eventually obtain

�k = �(Jz, QL�1QS) = �(S, L�1S) , (4.20)

where Q has been absorbed in S = QJ z using Q2 = Q.

4.2 Collision terms

In the left-hand side of Eq. (4.2) C[f ]’s represent the collision terms. Since for
p

qB � gT ,
the typical scale of 1 to 2 process ⇠ g2qB/T 2 is much larger than that of 2 to 2 collision
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Equilibrium has no current 
Current proportional to d f and thus E 
Coefficient → Electric conductivity

respectively, as

E := Nc
X

f,n

↵n
|qfB|
2⇡

Z

dpz
2⇡

"fn
⇥

feq(p) + f̄eq(p)
⇤

+ 2(N2
c � 1)

Z

d3k

(2⇡)3
!k geq(k) , (4.7)

Pz := Nc
X

f,n

↵n
|qfB|
2⇡

Z

dpz
2⇡

p2z
"fn

⇥

feq(p) + f̄eq(p)
⇤

+ 2(N2
c � 1)

Z

d3k

(2⇡)3
k2
z

!k
geq(k) . (4.8)

The inside of the last brackets in the right-hand side of Eq. (4.3) is expressed as
⇥

J z �
n0/(E + Pz)T 0z

⇤

Ez, where we defined the current and the momentum vectors by

J µ := qf

0

B

@

pµ/"fn
�p0µ/"fn0

0

1

C

A

, T 0µ :=

0

B

@

pµ

p0µ

kµ

1

C

A

. (4.9)

Let us next turn to the collision terms in the right-hand side, for which perturbative fluc-
tuations around the equilibrium distribution functions are important. We denote these
fluctuations as fp = feq(p) + �fp, f̄p0 = f̄eq(p0) + �f̄p0 , and gk = geq(k) + �gk. Because these
deviations are driven by Ez, it would be a natural parametrization to set

�fp = �feq(p)[1 � feq(p)] Ez �p ,

�f̄p0 = �f̄eq(p
0)[1 � f̄eq(p

0)] Ez �̄p0 ,

�gk = �geq(k)[1 + geq(k)] Ez �̃k .

(4.10)

Then, we can write the Boltzmann equation symbolically as

S = L� , (4.11)

where S := J z � T 0z/(E + Pz), and we defined � using �p, �̄p0 , and �̃k as

� :=

0

B

@

�p

�̄p0

�̃k

1

C

A

. (4.12)

What we are going to do below is to obtain � by solving the above Boltzmann equation.
In Eq. (4.11), L represents a linear operator acting on � which is defined by

L� :=
1

Ez

0

B

B

B

B

B

@

1

�Wp
C[f ]

1

�W̄p0
C̄[f ]

1

�W̃k

C̃[f ]

1

C

C

C

C

C

A

. (4.13)

We will see more concrete and explicit expressions for the collision operator in the next
subsection.

Now, before getting �, let us explain how we compute the longitudinal conductivity
from obtained �. The electric current parallel to B along the z axis reads

jz = �kEz =

Z

p
2P 3

p qf
�

�fp � �f̄p
�

= Nc
X

f

qf |qfB|
2⇡

1
X

n=0

↵n

Z

dpz
2⇡

pz
"fn

�

�fp � �f̄p
�

, (4.14)
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We will see more concrete and explicit expressions for the collision operator in the next
subsection.

Now, before getting �, let us explain how we compute the longitudinal conductivity
from obtained �. The electric current parallel to B along the z axis reads
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Fixed from the collision terms 
A huge matrix in Landau level space

This matrix has zero eigenvalue if hydro modes are not subtracted. 
In this approximation quark-gluon and flavor mixing occur only  
through the hydro mode subtraction.
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LLLA recovers  
Hattori-Satow-Li-Yee 
analytically

Large B is insufficient  
to justify LLLA
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No order of magnitude enhancement

Unfortunately (and surprisingly)  
the life time of B not much changed  
by strong B and finite density 
(Anyway, this is LONGITUDINAL)

This may be interesting because 
ONLY QCD-Critical-Point may  
significantly change s. 
(s diverges at QCP) 
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FIG. 5. (Left panels) Chirality charge susceptibility χ5 as a function of eB (in unit of m2
π) for several temperatures. The chiral

chemical potential is chosen as µ5 = 0, 200 MeV, and 400 MeV, respectively, from the upper to the lower panels. The solid
line corresponds to T = 0, the dashed line T = 0.95Tc, and the dot-dashed line T = 1.1Tc. Here Tc = 228 MeV is the critical
temperature in this model at µ5 = B = 0. (Right panels) Absolute value of the chiral condensate ⟨ūu⟩1/3 as a function of eB.
The line styles are the same defined in the left upper panel.

quarks. The current has been computed analytically in
Ref. [18] in four different ways.
To compute the current density along the magnetic

field, i.e. j3 = q⟨ψ̄γ3ψ⟩, we follow the common proce-
dure to add an external homogeneous vector potential
along the magnetic field, A3, coupled to the fermion field.

Then,

j3 = − ∂Ω

∂A3

∣∣∣∣
A3=0

. (18)

The derivative of the thermodynamic potential in the
presence of a background field is computed in the follow-
ing way. The coupling of quarks to A3 is achieved by
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quarks. The current has been computed analytically in
Ref. [18] in four different ways.
To compute the current density along the magnetic

field, i.e. j3 = q⟨ψ̄γ3ψ⟩, we follow the common proce-
dure to add an external homogeneous vector potential
along the magnetic field, A3, coupled to the fermion field.

Then,

j3 = − ∂Ω

∂A3
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A3=0

. (18)

The derivative of the thermodynamic potential in the
presence of a background field is computed in the follow-
ing way. The coupling of quarks to A3 is achieved by
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It is interesting to compute the chirality charge sus-
ceptibility χ5, as well as n5, defined as

χ5 = ⟨n2
5⟩ − ⟨n5⟩2 = − 1

βV

∂2Ω

∂µ2
5

, (17)

where β = 1/T and V the volume. We note that this
definition of the susceptibility is different from that in
Ref. [26] by V . In Fig. 5 we plot χ5 as a function of
eB for several µ5 values. The upper panel corresponds
to µ5 = 0, middle one to µ5 = 200 MeV, and lower
one to µ5 = 400 MeV. For completeness, in the right
panels of the same figure 5 we plot the chiral condensate
|⟨ūu⟩1/3| for the same T and same µ5. The oscillations in
χ5 are artificial results because of the momentum cutoff
Λ. As shown in Ref. [37], choosing a regulator which
is smoother than used in this work, the oscillations of
the various quantities could be erased. The qualitative
picture is, nevertheless, unchanged even with a different
regulator. For this reason we do not perform a systematic
study here on the cutoff scheme dependence.

A notable aspect is the suppression of the chirality-
charge fluctuations at large T and large eB. This is
evident, for example, in the result with µ5 = 0 and
T = 1.1Tc in Fig. 5. As long as eB is small, χ5 is
a monotonously increasing function of eB as expected
naively. When eB reaches a critical value around 20m2

π,
however, χ5 has a pronounced peak and then decreases
with increasing eB, which is a result of mixture with di-
verging chiral susceptibility at the chiral phase transition.
It should be mentioned that χ5 at µ5 = 0 (as shown in
the upper left panel of Fig. 5) does not diverge at the
critical eB since the mixing with the chiral susceptibility
is vanishing due to µ5 = 0. This behavior below and
above the chiral critical point can be easily understood
in terms of the chiral symmetry breaking by virtue of
the magnetic field. As a matter of fact, at T > Tc the
chiral condensate stays zero identically as long as eB is
small enough, leading to zero quasiparticle masses. Once
eB exceeds a critical value, the chiral symmetry is bro-
ken spontaneously even at high T (see the upper right
panel of Fig. 5) and the quasiparticle masses can then
jump to a substantially large number then. Such dy-
namical quark masses result in appreciable suppression
of the chirality-charge fluctuations. As it will be shown
in the next section, this interesting and intuitively un-
derstandable effect appears in the current susceptibility
as well.

B. Current density and its susceptibility

The current density j3 (and its susceptibility as well) is
the most important quantity to compute for the Chiral
Magnetic Effect [26]. It corresponds to the charge per
unit volume that moves in the direction of the applied
magnetic field in a domain where an instanton/sphaleron
transition takes place, which causes chirality change of



October 11, 2017@ CCNU, Wuhan

CME near QCP ?

17

Fukushima-Ruggieri-Gatto (2010)

Chiral charge fluctuations enhanced at phase transition

8

0 10 20 30 40
eB/mp2

0.025

0.05

0.075

0.1

0.125

0.15

bV
c 5

m5=0

T=0
T=0.95 Tc
T=1.10 Tc

[GeV  ]2

0 10 20 30 40
eB/mp2

0

50

100

150

200

250

300

C
hi

ra
l C

on
de

ns
at

e

m5=0

[MeV]

m5=200MeV

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

eB/mp2

bV
c

5

[GeV  ]2

m5=200MeV

0 10 20 30 40
0

50

100

150

200

250

300

eB/mp2

Ch
ira

l C
on

de
ns

at
e

[MeV]

m5=400MeV

[GeV ]2

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

eB/mp2

bV
c 5

m5=400MeV

0 10 20 30 40
0

50

100

150

200

250

300

eB/.mp2

C
hi

ra
l C

on
de

ns
at

e
[MeV]

FIG. 5. (Left panels) Chirality charge susceptibility χ5 as a function of eB (in unit of m2
π) for several temperatures. The chiral

chemical potential is chosen as µ5 = 0, 200 MeV, and 400 MeV, respectively, from the upper to the lower panels. The solid
line corresponds to T = 0, the dashed line T = 0.95Tc, and the dot-dashed line T = 1.1Tc. Here Tc = 228 MeV is the critical
temperature in this model at µ5 = B = 0. (Right panels) Absolute value of the chiral condensate ⟨ūu⟩1/3 as a function of eB.
The line styles are the same defined in the left upper panel.

quarks. The current has been computed analytically in
Ref. [18] in four different ways.
To compute the current density along the magnetic

field, i.e. j3 = q⟨ψ̄γ3ψ⟩, we follow the common proce-
dure to add an external homogeneous vector potential
along the magnetic field, A3, coupled to the fermion field.

Then,

j3 = − ∂Ω

∂A3

∣∣∣∣
A3=0

. (18)

The derivative of the thermodynamic potential in the
presence of a background field is computed in the follow-
ing way. The coupling of quarks to A3 is achieved by
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quarks. The current has been computed analytically in
Ref. [18] in four different ways.
To compute the current density along the magnetic

field, i.e. j3 = q⟨ψ̄γ3ψ⟩, we follow the common proce-
dure to add an external homogeneous vector potential
along the magnetic field, A3, coupled to the fermion field.

Then,

j3 = − ∂Ω

∂A3

∣∣∣∣
A3=0

. (18)

The derivative of the thermodynamic potential in the
presence of a background field is computed in the follow-
ing way. The coupling of quarks to A3 is achieved by

At finite chiral chemical potential there is direct mixing  
between the chiral charge and the scalar (s meson).
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FIG. 7. Subtracted current susceptibility, βV χ̄J , as a function
of eB (in unit of m2

π) for several different values of T (in unit
of Tc = 228 MeV) and µ5 (measured in MeV).

Besides j3, another interesting quantity is the current
susceptibility defined by

χJ = ⟨j23⟩ − ⟨j3⟩2 = − 1

βV

∂2Ω

∂A2
3

∣∣∣∣
A3=0

. (23)

If we naively use the above definition (23) for the cut-
off model like the PNJL model, χJ is non-zero propor-
tional to Λ2 even at T = B = 0 as discussed in Ref. [26].

This is in contradiction with the gauge invariance, which
requires the above susceptibility to vanish because the
current susceptibility is nothing but the 33-component
of the photon polarization tensor at zero momentum.
Therefore, in order to deal with the physically meaning-
ful quantity, we subtract the vacuum part from the above
equation and compute

χ̄J = χJ − χJ

∣∣
T=B=0

. (24)

We plot our results for βV χ̄J as a function of eB in
Fig. 7 at µ5 = 0 (upper panel), µ5 = 200 MeV (middle
panel), and µ5 = 400 MeV (lower panel). The oscilla-
tions in the susceptibility behavior are an artifact of the
momentum cutoff. In these plots Tc = 228 MeV denotes
the critical temperature for chiral symmetry restoration
at µ5 = B = 0.

Let us first focus on the case at µ5 = 0. At T = 0
and T = 0.95Tc the system is in the broken phase with
⟨ūu⟩ ̸= 0 over the whole range of eB. On the other
hand, at the temperature T = 1.1Tc, the system is in
the chiral symmetric phase for eB smaller than a critical
value. There is a phase transition from the symmetric to
the broken phase with increasing eB. This transition is
driven by the presence of the magnetic field and its effects
as the catalysis of chiral symmetry breaking as mentioned
before. The effect of the phase transition leads to a cusp
in the susceptibility χJ as a function of eB. We also
notice that there seems to exist a range in eB in which
χ̄J < 0. This is a mere artifact of the momentum cutoff,
which causes unphysical fluctuations in χ̄J .

The qualitative picture is unchanged at µ5 ̸= 0. One
noticeable point that deserves an elucidation is that χ̄J

at T = 0 but µ5 ̸= 0 is smaller than χ̄J at T = µ5 = 0.
We can partly explain this result from Fig. 2; µ5 ̸= 0
at small temperature pushes the strength of the chiral
condensate up. Hence the mean-field mass of quarks is
enhanced slightly by µ5 ̸= 0. The larger the mass is,
the smaller the fluctuations will be suppressed, as our
numerical results show.

It is not an artifact but an interesting observation that
the chiral phase transition critically affects the suscepti-
bility χJ as well as χ5. As shown in Ref. [26] the sus-
ceptibility difference between the longitudinal and trans-
verse directions has an origin in the axial anomaly and
is insensitive to the infrared information, but χJ (and
thus transverse χT

J too) should be largely enhanced near
the chiral phase transition, which would ease the con-
firmation of the CME signals at experiment, though the
strength of the observable signal is determined by χJ−χT

J
and is not changed.

V. CONCLUSIONS

In this article we have considered several aspects re-
lated to the response of quark matter to an external
magnetic field. Quark matter has been modelled by the
Polyakov extended version of the Nambu–Jona-Lasinio
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If we naively use the above definition (23) for the cut-
off model like the PNJL model, χJ is non-zero propor-
tional to Λ2 even at T = B = 0 as discussed in Ref. [26].

This is in contradiction with the gauge invariance, which
requires the above susceptibility to vanish because the
current susceptibility is nothing but the 33-component
of the photon polarization tensor at zero momentum.
Therefore, in order to deal with the physically meaning-
ful quantity, we subtract the vacuum part from the above
equation and compute

χ̄J = χJ − χJ
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We plot our results for βV χ̄J as a function of eB in
Fig. 7 at µ5 = 0 (upper panel), µ5 = 200 MeV (middle
panel), and µ5 = 400 MeV (lower panel). The oscilla-
tions in the susceptibility behavior are an artifact of the
momentum cutoff. In these plots Tc = 228 MeV denotes
the critical temperature for chiral symmetry restoration
at µ5 = B = 0.

Let us first focus on the case at µ5 = 0. At T = 0
and T = 0.95Tc the system is in the broken phase with
⟨ūu⟩ ̸= 0 over the whole range of eB. On the other
hand, at the temperature T = 1.1Tc, the system is in
the chiral symmetric phase for eB smaller than a critical
value. There is a phase transition from the symmetric to
the broken phase with increasing eB. This transition is
driven by the presence of the magnetic field and its effects
as the catalysis of chiral symmetry breaking as mentioned
before. The effect of the phase transition leads to a cusp
in the susceptibility χJ as a function of eB. We also
notice that there seems to exist a range in eB in which
χ̄J < 0. This is a mere artifact of the momentum cutoff,
which causes unphysical fluctuations in χ̄J .

The qualitative picture is unchanged at µ5 ̸= 0. One
noticeable point that deserves an elucidation is that χ̄J

at T = 0 but µ5 ̸= 0 is smaller than χ̄J at T = µ5 = 0.
We can partly explain this result from Fig. 2; µ5 ̸= 0
at small temperature pushes the strength of the chiral
condensate up. Hence the mean-field mass of quarks is
enhanced slightly by µ5 ̸= 0. The larger the mass is,
the smaller the fluctuations will be suppressed, as our
numerical results show.

It is not an artifact but an interesting observation that
the chiral phase transition critically affects the suscepti-
bility χJ as well as χ5. As shown in Ref. [26] the sus-
ceptibility difference between the longitudinal and trans-
verse directions has an origin in the axial anomaly and
is insensitive to the infrared information, but χJ (and
thus transverse χT
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tional to Λ2 even at T = B = 0 as discussed in Ref. [26].
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requires the above susceptibility to vanish because the
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Therefore, in order to deal with the physically meaning-
ful quantity, we subtract the vacuum part from the above
equation and compute
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We plot our results for βV χ̄J as a function of eB in
Fig. 7 at µ5 = 0 (upper panel), µ5 = 200 MeV (middle
panel), and µ5 = 400 MeV (lower panel). The oscilla-
tions in the susceptibility behavior are an artifact of the
momentum cutoff. In these plots Tc = 228 MeV denotes
the critical temperature for chiral symmetry restoration
at µ5 = B = 0.

Let us first focus on the case at µ5 = 0. At T = 0
and T = 0.95Tc the system is in the broken phase with
⟨ūu⟩ ̸= 0 over the whole range of eB. On the other
hand, at the temperature T = 1.1Tc, the system is in
the chiral symmetric phase for eB smaller than a critical
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the broken phase with increasing eB. This transition is
driven by the presence of the magnetic field and its effects
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before. The effect of the phase transition leads to a cusp
in the susceptibility χJ as a function of eB. We also
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We can partly explain this result from Fig. 2; µ5 ̸= 0
at small temperature pushes the strength of the chiral
condensate up. Hence the mean-field mass of quarks is
enhanced slightly by µ5 ̸= 0. The larger the mass is,
the smaller the fluctuations will be suppressed, as our
numerical results show.

It is not an artifact but an interesting observation that
the chiral phase transition critically affects the suscepti-
bility χJ as well as χ5. As shown in Ref. [26] the sus-
ceptibility difference between the longitudinal and trans-
verse directions has an origin in the axial anomaly and
is insensitive to the infrared information, but χJ (and
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J too) should be largely enhanced near
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firmation of the CME signals at experiment, though the
strength of the observable signal is determined by χJ−χT

J
and is not changed.

V. CONCLUSIONS

In this article we have considered several aspects re-
lated to the response of quark matter to an external
magnetic field. Quark matter has been modelled by the
Polyakov extended version of the Nambu–Jona-Lasinio
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Implications
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QCP would significantly change s.

If µ5 is non-zero, the chiral phase transition would  
significantly change chirality and current fluctuations.

s diverges more around QCP if µ5 is non-zero.

An interesting question:
CME signals are P-odd fluctuations (which are P-even). 
They should be affected by QCP — how? 
g-correlator near QCP should deserve more investigations.

I do not have an answer yet…
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Conclusions

We have done the electric conductivity calculation 
at strong magnetic field and at finite density. 

We found weak dependence on the quark mass, 
the magnetic field, and the chemical potential (after 
the hydro zero-mode subtraction). 

Though our calculations assume a strong magnetic 
field, our results are surprisingly close to the 
(quenched) lattice QCD results.

20


