Multi moment cancellation of participant fluctuations - MMCP method

Viktor Begun

Warsaw University of Technology

in collaboration with Maja Mackowiak-Pawlowska

arXiv:1705.01110, 1606.05358

Introduction

- The only experimentally controllable way to probe the QCD phase diagram is by studying interactions of different system size nuclei at various energies.
- Participant fluctuations is one of the main background effects in such study.
- ullet It is the number of nucleons, N_P , that interacted inelastically and produced other particles during the collision.
- These fluctuations may hide the fluctuations from other sources.

There are several popular ways of reducing participant fluctuations:

- (i) the selection of as narrow centrality bins as possible
- (ii) the Centrality Bin Width Correction procedure (CBWC) (STAR, Luo (2011)),
- (iii) the use of **strongly intensive** quantities (Gazdzicki, Mrowczynski (1992), Gorenstein, Gazdzicki (2011)),

We propose a different approach - to cancel participant fluctuations in a combination of several high fluctuation moments (V.B., Mackowiak-Pawlowska 1705.01110).

Fluctuation measures

A multiplicity distribution, P(N), can be characterized by central moments, m_n ,

$$m_n \, = \, \sum_N \left(N - \langle N \rangle \right)^n P(N) \, , \qquad \qquad \text{where} \quad \langle N^n \rangle \, = \, \sum_N N^n \, P(N) \, .$$

They are related to **cumulants**, κ_n ,

$$\kappa_2 = m_2, \qquad \kappa_3 = m_3, \qquad \kappa_4 = m_4 - 3m_2^2, \qquad \dots$$

and susceptibilities, χ_n ,

$$\chi_n = \frac{\partial^n (\mathcal{P}/T^4)}{\partial (\mu/T)^n} = \frac{\kappa_n}{V T^3}, \qquad \chi_{n,k} = \frac{\chi_n}{\chi_k} = \frac{\kappa_n}{\kappa_k},$$

where \mathcal{P} is pressure, $\mathbf{7}$ - temperature, μ - chemical potential, and \mathbf{V} - volume.

Frequently used cumulant ratios - **scaled variance**, normalized **skewness** and normalized **kurtosis** - are:

$$\omega \; = \; \frac{\kappa_2}{\langle N \rangle} \; = \; \frac{\sigma^2}{\langle N \rangle} \; , \qquad \qquad \mathbf{S} \, \sigma \; = \; \frac{\kappa_3}{\kappa_2} \; , \qquad \qquad \kappa \, \sigma^2 \; = \; \frac{\kappa_4}{\kappa_2} \; ,$$

where $\sigma = \sqrt{\langle N^2 \rangle - \langle N \rangle^2} = \sqrt{\kappa_2}$ is standard deviation.

Relation to shapes

Poisson distribution: $\omega = S\sigma = \kappa\sigma^2 = \mathbf{1}$

Normal (Gauss) distribution: ω - free parameter, $S\sigma = \kappa\sigma^2 = 0$ Log-normal distribution: $\omega \sim \langle N \rangle, \ S\sigma \sim \langle N \rangle, \ \kappa\sigma^2 \sim \langle N \rangle^2$

 The approach 'just take negative binomial (Poisson, Gauss...)' is not working, because it imposes a certain relation between moments, which might not exist.

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 4/17

Independent participant model

The only assumptions are that participants are **identical** and **independent**. Then mean multiplicity N is the sum of contributions from N_P participants,

$$N = n_1 + n_2 + \ldots + n_{N_{\mathbf{P}}}$$
, and $\langle N \rangle = \langle N_{\mathbf{P}} \rangle \langle n_{A} \rangle$,

where *identical* and *independent* means that, $\langle n_i \rangle = \langle n_j \rangle = \langle n_1 \rangle = \langle n_A \rangle$, and $\langle n_i \, n_j \dots n_k \rangle = \langle n_A \rangle^k$. Using multinomial theorem

$$N^{k} = (n_{1} + n_{2} + \ldots + n_{N_{\mathbf{p}}})^{k} = \sum_{k_{1}, k_{2}, \ldots, k_{N_{\mathbf{p}}}} \frac{k!}{k_{1}! k_{2}! \ldots k_{N_{\mathbf{p}}}!} n_{1}^{k_{1}} n_{2}^{k_{2}} \ldots n_{N_{\mathbf{p}}}^{k_{N_{\mathbf{p}}}} \delta \left(k - \sum_{i=1}^{N_{\mathbf{p}}} k_{i}\right),$$

where δ is the Kronecker delta, one can obtain arbitrarily high moments, e.g.

$$\omega = \frac{\omega_{A} + \langle n_{A} \rangle \omega_{P}}{s},$$

$$S \sigma = \frac{\omega_{A} S_{A} \sigma_{A} + \langle n_{A} \rangle \omega_{P} [3 \omega_{A} + \langle n_{A} \rangle S_{P} \sigma_{P}]}{\omega_{A} + \langle n_{A} \rangle \omega_{P}},$$

$$\kappa \sigma^{2} = \frac{\omega_{A} \kappa_{A} \sigma_{A}^{2} + \langle n_{A} \rangle \omega_{P} [\langle n_{A} \rangle^{2} \kappa_{P} \sigma_{P}^{2} + \omega_{A} (3 \omega_{A} + 4 S_{A} \sigma_{A} + 6 \langle n_{A} \rangle S_{P} \sigma_{P})]}{\omega_{A} + \langle n_{A} \rangle \omega_{P}},$$

red - what we would like to measure, **black** - what we measure, **blue** - participant fluctuations (V.B. 1606.05358, Skokov, Friman, Redlich (2013), Braun-Munzinger, Rustamov, Stachel (2017))

< 마 > 4 급 > 4 ឨ >

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 5 / 17

The problem

• A moment of a rank n is a function of all lower moments for both participants, $\langle N_{\bf p}^n \rangle$, and a source, $\langle n_{\bf A}^n \rangle$,

$$\langle N^n \rangle = \mathcal{F}\left(\langle n_{\mathbf{A}}^1 \rangle, \langle n_{\mathbf{A}}^2 \rangle, \dots \langle n_{\mathbf{A}}^n \rangle, \langle N_{\mathbf{P}}^1 \rangle, \langle N_{\mathbf{P}}^2 \rangle, \dots \langle N_{\mathbf{P}}^n \rangle\right).$$

Therefore, one has only n measures, but 2n unknowns for their description.

Strongly intensive measures require two types of values, e.g. pions and kaons,

$$\begin{split} \langle N_{\rm A}^n \rangle \; &=\; \mathcal{F} \left(\langle n_{\rm A}^1 \rangle, \langle n_{\rm A}^2 \rangle, \ldots \langle n_{\rm A}^n \rangle, \; \langle N_{\rm P_A}^1 \rangle, \langle N_{\rm P_A}^2 \rangle, \ldots \langle N_{\rm P_A}^n \rangle \right) \,, \\ \langle N_{\rm B}^n \rangle \; &=\; \mathcal{F} \left(\langle n_{\rm B}^1 \rangle, \langle n_{\rm B}^2 \rangle, \ldots \langle n_{\rm B}^n \rangle, \; \langle N_{\rm P_B}^1 \rangle, \langle N_{\rm P_B}^2 \rangle, \ldots \langle N_{\rm P_B}^n \rangle \right) \,. \end{split}$$

and the **assumption** that all corresponding participant fluctuations moments are the same $\langle N_{\mathbf{P_A}}^n \rangle = \langle N_{\mathbf{P}_B}^n \rangle = \langle N_{\mathbf{P}}^n \rangle$, which gives **3n unknowns** for **2n measured** values.

ullet Wounded nucleon model gives all $\langle N_{
m P}^n \rangle$, but it is not working - participants are not protons. The new SPS data of the NA49 and NA61/SHINE show that

$$\omega_{\mathbf{p}+\mathbf{p}} > \omega_{\mathbf{Ar}+\mathbf{Sc}}$$
, $\omega_{\mathbf{Pb}+\mathbf{Pb}}$ at SPS (Rybczynski (2013), Aduszkiewicz (2015), Seryakov (2017))

i.e. $\omega_{\bf P}$ can be negative, which is forbidden by definition. At higher energies the wounded nucleon model clearly contradicts the data, because

 $\omega_{\mathbf{p}+\mathbf{p}} \gg \omega_{\mathbf{Pb}+\mathbf{Pb}}$ at LHC (V.B. 1606.05358)

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 6 / 17

The MMCP

 Suppose that current experimental methods are effective enough to make scaled variance for the fluctuations from a source close to the measured fluctuations,

$$\omega \simeq \omega_{A}$$
, then $\alpha = \frac{\omega - \omega_{A}}{\omega_{A}} = \langle \mathbf{n}_{A} \rangle \frac{\omega_{P}}{\omega_{A}} \ll 1$ is a small parameter

ullet $\omega_{
m A}$ competes with $\langle n_{
m A} \rangle$ $S_{
m P}$ and $\langle n_{
m A} \rangle^2 \, \kappa_{
m P} \, \sigma_{
m p}^2$, assume that their ratio is also small,

$$|\beta| = \langle n_{A} \rangle \frac{|S_{P} \sigma_{P}|}{\omega_{A}} \ll 1, \qquad |\gamma| = \langle n_{A} \rangle^{2} \frac{|\kappa_{P} \sigma_{P}^{2}|}{\omega_{A}^{2}} \ll 1,$$

The α , $|\beta|$, $|\gamma| \ll 1$ is the **mathematical meaning** of the 'small participant fluctuations'. Then

$$\begin{split} & \omega_{A} \simeq \omega - \alpha \, \omega \,, \\ & S_{A} \, \sigma_{A} \simeq S \, \sigma \, + \, \alpha \, \left(S \, \sigma - 3 \, \omega_{A} \right) \,, \\ & \kappa_{A} \, \sigma_{A}^{2} \simeq \kappa \, \sigma^{2} \, + \, \alpha \left(\kappa \, \sigma^{2} - 3 \, \omega_{A}^{2} - 4 \, \omega_{A} \, S_{A} \, \sigma_{A} \right) \,, \qquad \alpha, \, |\beta|, \, |\gamma| \, \ll \, 1 \,. \end{split}$$

The skewness $S_A \sigma_A$ has a contribution ω_A , while kurtosis $\kappa_A \sigma_A^2$ includes ω_A^2 . Therefore, it is reasonable to introduce two more notations:

$$\delta = \frac{\mathbf{S_A} \, \sigma_{\mathbf{A}}}{\omega_{\mathbf{A}}}$$
 and $\varepsilon = \frac{\kappa_{\mathbf{A}} \, \sigma_{\mathbf{A}}^2}{\omega_{\mathbf{A}}^2}$

Then, without any approximation

$$\begin{split} \omega &= \omega_{\mathbf{A}} (1 + \alpha) \,, \\ \mathbf{S} \, \sigma &= \omega_{\mathbf{A}} \, \frac{3\alpha + \delta + \alpha \, \beta}{1 + \alpha} \,, \\ \kappa \, \sigma^2 &= \omega_{\mathbf{A}}^2 \, \frac{3\alpha + \varepsilon + \alpha \, \left[\, 6\beta + \gamma + 4\delta \, \right]}{1 + \alpha} \,. \end{split}$$

One can make α , $|\beta|$, $|\gamma| \ll 1$ small by **decreasing bin width**, or by decreasing $\langle n_A \rangle$, choosing **rare particles**, or **net charges** for analysis (Braun-Munzinger, Rustamov, Stachel (2017)).

Close to critical point $\kappa_n \sim \xi^{\frac{5(n-1)-1}{2}}$, $\xi \to \infty$ (Stephanov (2008), Mukherjeea, Venugopalan, Yin (QM2017)), then

$$\alpha \sim \langle n_{\mathbf{A}} \rangle^2 \frac{\omega_{\mathbf{P}}}{\xi^2} \to 0$$
, $|\beta| \sim \langle n_{\mathbf{A}} \rangle^2 \frac{|S_{\mathbf{P}} \sigma_{\mathbf{P}}|}{\xi^2} \to 0$, $|\gamma| \sim \langle n_{\mathbf{A}} \rangle^4 \frac{|\kappa_{\mathbf{P}} \sigma_{\mathbf{P}}^2|}{\xi^4} \to 0$,

while

$$\delta \sim \langle \textit{n}_A \rangle \; \xi^{0.5} \rightarrow \infty \; , \quad \text{ and } \quad \epsilon \sim \langle \textit{n}_A \rangle^2 \; \xi \rightarrow \infty \; .$$

Away from critical point, e.g. in hadron gas, (Karsch, Redlich (2011))

$$\delta = \varepsilon = \frac{1}{\omega_{\mathbf{A}}^2} = \tanh^2(\mu_B/T) \rightarrow 0, \quad \mu_B/T \rightarrow 0$$

 $\delta=\epsilon=0$ for Gauss, and $\delta=\epsilon=1$ for Poisson distribution.

For α , $|\beta|$, $|\gamma| \ll 1$, and neglecting **either** δ or ϵ , one can solve the system

$$\omega = \omega_{A}(1+\alpha),$$

$$S\sigma = \omega_{A} \frac{3\alpha + \delta + \alpha\beta}{1+\alpha},$$

$$\kappa\sigma^{2} = \omega_{A}^{2} \frac{3\alpha + \varepsilon + \alpha\left[6\beta + \gamma + 4\delta\right]}{1+\alpha}.$$

In case of $\delta \ll \varepsilon$ there is a simple **analytic solution**:

$$\begin{array}{l} \alpha \; \simeq \; \displaystyle \frac{S\,\sigma}{3\,\omega - S\,\sigma} \; , \\ \\ \omega_{\mathbf{A}} \; \simeq \; \omega \; - \; \displaystyle \frac{S\,\sigma}{3} \; , \\ \\ \kappa_{\mathbf{A}} \; \sigma_{\mathbf{A}}^2 \; \simeq \; \kappa \, \sigma^2 \; - \; \omega_{\mathbf{A}} \, S\,\sigma \; , \qquad \alpha, \; |\beta|, \; |\gamma| \; \ll \; 1, \; \; \delta \ll \varepsilon \; . \end{array}$$

These approximate equations **remove** fluctuations of **participants** and **obtain** the fluctuation of **sources** through **measured** values. This is the meaning of the **MMCP method**.

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 9 / 17

Test of the MMCP in EPOS – parameters and net electric charge

Net electric **charge** in ${}^{40}_{18}Ar + {}^{45}_{21}Sc$ at $p_{lab} = 150$ **GeV/c** and with $y^{CMS} > 0$ in centrality, **left** to **right**: **20%**, 17.5%, 15%, 12.5%, 10%, 7.5%, 5%, 2.5%, 1.5%, 1%, 0.75%, 0.5% and **0.2%**.

- The condition α , $|\beta|$, $|\gamma| \ll 1$ is valid for the system that we study
- The $|\delta| \ll |\epsilon|$ is not always satisfied, however, $|\delta|$, $|\epsilon| < 3\alpha$.
- $\langle N_{\rm net\ charge} \rangle / \langle N_{\rm p}^{max} \rangle = (18 + 21)/(40 + 45) \simeq 0.5$, condition $y^{CMS} > 0$ corresponds to 1/2 of created system, therefore, $\langle n_{\rm A} \rangle \simeq 0.5 * 0.5 = 0.25 \simeq 0.3$.
- $\langle n_A \rangle$ is independent of centrality. (V.B., Mackowiak-Pawlowska 1705.01110)

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 10 / 1

red - what we would like to measure, **black** - what we measure, **blue** - participants, **magenta** - the 'reference' is obtained selecting $N_P = const.$

- ullet $\omega_{\mathbf{A}}$ is **independent** of **centrality** window (V.B., Mackowiak-Pawlowska 1705.01110)
- (n_A) is smal, but it's fluctuations give the main contribution $\omega \sim \omega_A \simeq 3.3 \gg \omega_P \gtrsim 0.5$
- ullet $\omega_{\mathbf{P}}$ is small, but it **exists**, even if **bin width** goes to **zero**
- ullet The **skewness of a source**, ${f S_A}$ ${f \sigma_A}$, is also **independent** on centrality and is close to **zero**.
- The large values of the net charge $S\sigma$ are due to the **second** moment fluctuations of **participants**, $S_A \sigma_A \simeq 0.1 \ll S\sigma \simeq 3 (n_A) \omega_P > 0$, while $S_P \sigma_P \leq 0$, for all δc

Test of the MMCP in EPOS – normalized kurtosis

Left to **right**: **20%**, 17.5%. 15%. 12.5%. 10%. 7.5%. 5%. 2.5%. 1.5%. 1%. 0.75%, 0.5% and **0.2%**.

red - what we would like to measure, **black** - what we measure, **blue** - participants, **magenta** - the 'reference' is obtained selecting $N_P = const.$

- ullet The **higher** the **order**, the **stronger** is the **dependence** on the **bin width** δc
- In very central collision in a fixed target experiment N_P ≃ const, while in collider mode and in peripheral collisions N_P ≠ const. Therefore, STAR, NA61 and STAR fixed target data may be hard to compare (v.B., Mackowiak-Pawlowska 1705.01110).

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 12 / 1

Test of the CBWC method in EPOS

The **CBWC** procedure used by **STAR** means that a value X is measured in r sub-samples, and then summed up with the relative weights w_r of the sub-samples r,

$$X = \sum_r w_r X_r$$
, $w_r = n_r / \sum_r n_r$,

where n_r is the number of events in the bin r.

bin width	n _r	W _r	⟨N ⟩	$\sigma^2/\langle N \rangle$	S σ	κ σ ²
0-1%	624827	≃ 0.2	16.88(1)	3.405(3)	0.503(4)	1.2(3)
1-2%	626043	≃ 0.2	16.36(1)	3.417(3)	0.603(4)	2.4(3)
2-3%	611242	≃ 0.2	15.83(1)	3.447(3)	0.609(4)	2.2(3)
3-4%	665988	≃ 0.2	15.32(1)	3.467(3)	0.660(4)	2.9(3)
4-5%	623110	≃ 0.2	14.81(1)	3.486(3)	0.741(3)	2.3(3)
0-5%	3151210	1.0	15.834(4)	3.442(1)	0.625(2)	2.2(1)

The sub-bin values for the collected number of events n_r , the weight of the sub-bin w_r , the average net charge $\langle N \rangle$, scaled variance $\omega = \kappa_2/\langle N \rangle = \sigma^2/\langle N \rangle$, normalized skewness $\sigma = \kappa_3/\kappa_2$, and normalized kurtosis $\kappa \sigma^2 = \kappa_4/\kappa_2$ (V.B., Mackowiak-Pawlowska 1705.01110).

- The CBWC reduces statistical uncertainty.
- The **CBWC gives average measured** fluctuations over the selected sub-bins.

Viktor Begun (WUT) Participant Fluctuations October 12, 2017 13 / 17

Comparison of different methods for 0%–5% and 0%–20% centrality

0 – 5%	CBWC	net charge	reference	A-source	MMCP
$\kappa_2/\langle N \rangle$	3.4	3.5	3.3	3.3	3.3
κ_3/κ_2	0.6	0.7	0.2	0.2	0
κ_4/κ_2	2.2(1)	2.2(2)	1.3(5)	0.7(2)	0.0(2)

0 – 20%	net charge	A-source	MMCP
$\kappa_2/\langle N \rangle$	4.0	3.3	3.4
κ_3/κ_2	1.9	0.2(1)	0
κ ₄ /κ ₂	5.3(2)	0.0(2)	-1.1(2)

- The MMCP coincides within the uncertainty with the A-source for $\omega = \kappa_2/\langle N \rangle$ in the 0-5% centrality, and deviates only for 2% from A-source in the 0-20% centrality.
- The CBWC overestimates $S \sigma = \kappa_3/\kappa_2$ and $\kappa \sigma^2 = \kappa_4/\kappa_2$ three times.
- The κ_3/κ_2 of sources is zero by definition in the **MMCP**. It **agrees** within three standard deviations with the **A-source** generated by EPOS.
- The κ_4/κ_2 , in MMCP for 0-5% bin underestimates the A-source. This is the result of neglecting skewness of the participants $S_P \sigma_P$ (V.B., Mackowiak-Pawlowska 1705.01110).

Conclusions I

- The average number of particles produced by a source, $\langle n_{\rm A} \rangle$, and it's fluctuations of the second, $\omega_{\rm A}$, and the third order, $S_{\rm A}$ $\sigma_{\rm A}$, do not depend on centrality.
- However, the fourth order fluctuations of a source, $\kappa_A \, \sigma_A^2$, change non-monotonously for the bin width smaller than 5% in the range from -1 to +1. This effect should be studied, especially for higher moments.
- $S \sigma$ and $\kappa \sigma^2$ depend on the lower order fluctuations, which give the largest contribution to their values. The fluctuations from a source that one would like to access, $S_A \sigma_A$ and $\kappa_A \sigma_A^2$, are almost zero in the considered example:

$$S \sigma \simeq 3 \langle n_A \rangle \omega_P > 0$$
, $\kappa \sigma^2 \simeq 3 \langle n_A \rangle \omega_A \omega_P > 0$, $S_A \sigma_A \simeq 0$, $\kappa_A \sigma_A^2 \simeq 0$.

- The CBWC is unable to remove participant fluctuations. It gives the average of the 'total', i.e. non-processed fluctuations, which are dominated by participant fluctuations. Its results depend on the width, weight, and the position of the sub-bins, i.e. may give arbitrary result.
- The same is true if one does not mix the bins, but selects a particular centrality bin and increases statistics.

Conclusions II

- A fluctuation of participants and a contribution from lower moments may persist in higher moments, even if the bin width approaches zero.
- Summary of the methods reducing participant fluctuations:
 - (i) Narrowing centrality bin gives $\omega = \omega_A + X$, while ω_A is needed,
 - (ii) CBWC gives $\langle \omega \rangle = \langle \omega_A \rangle + \langle X \rangle$, while ω_A is needed,
 - (iii) Strongly Intensive quantities give $\langle n_{\rm B} \rangle \omega_{\rm A} \pm \langle n_{\rm A} \rangle \omega_{\rm B}$, while $\omega_{\rm A}$ or $\omega_{\rm B}$ is needed,
 - (iv) MMCP gives ω_A (!), if X/ω_A is a small parameter.
- We introduce the way how to **quantify smallness** and **largeness** of fluctuations:

$$\alpha = \langle \mathbf{n}_{\mathbf{A}} \rangle \, \frac{\omega_{\mathbf{P}}}{\omega_{\mathbf{A}}} \,, \quad \beta = \langle \mathbf{n}_{\mathbf{A}} \rangle \, \frac{\mathbf{S}_{\mathbf{P}} \, \sigma_{\mathbf{P}}}{\omega_{\mathbf{A}}} \,, \quad \gamma = \langle \mathbf{n}_{\mathbf{A}} \rangle^2 \, \frac{\kappa_{\mathbf{P}} \, \sigma_{\mathbf{P}}^2}{\omega_{\mathbf{A}}^2} \,, \quad \delta = \frac{\mathbf{S}_{\mathbf{A}} \, \sigma_{\mathbf{A}}}{\omega_{\mathbf{A}}} \,, \quad \epsilon = \frac{\kappa_{\mathbf{A}} \, \sigma_{\mathbf{A}}^2}{\omega_{\mathbf{A}}^2} \,.$$

• The MMCP works well for the scaled variance. Is it possible to obtain $S_A \sigma_A$ and $\kappa_A \sigma_A^2$ measuring κ_5 and κ_6 , and further developing MMCP?

Thank you!

Join to NA61-theory on-line seminars https://indico.cern.ch/category/5919/ and facebook group https://www.facebook.com/groups/1838910586343222/ for the exchange of ideas related to the NA61-SHINE program http://shine.web.cern.ch/