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Definitions (1)

• Definition: Single & Pair Densities

• Factorize average yield and kinematic dependence

ρ1(φi ,ηi ) = N(φi ,ηi ) / ΔφΔη

2

Single Density:

Pair Density: ρ2 (φ1,η1,φ2,η2 ) = N(φ1,η1)N(φ2,η2 ) / Δφ
2Δη2

Histogram — number of singles per 
event normalized per bin width

Histogram — number of pairs 
per event normalized per bin 
width

ρ1(φi ,ηi ) = N P1(φi ,ηi )
N = ρ1(φi ,ηi )dφi dηi

accept
∫

1= P1(φi ,ηi )dφi dηi
accept
∫

Single Probability Distribution

ρ2 (φ1,η1,φ2,η2 ) = N(N −1) P2 (φ1,η1,φ2,η2 )

Pair Probability Distribution

N(N −1) = ρ2 (φ1,η1,φ2,η2 )
accept
∫ dφ1dη1dφ2dη2

1= P2 (φ1,η1,φ1,η1)
accept
∫ dφ1dη1dφ2dη2

1st Momeent: Avg Multiplicity

2nd Factorial: 
Avg Number of Pairs
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Definitions (1I)

• Two-Particle Cumulant

• Normalized Cumulant
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C2 (φ1,η1,φ2,η2 )= ρ2 (φ1,η1,φ2,η2 )− ρ1(φ1,η1)ρ1(φ2,η2 )

C2 (Δφ,Δη)= C2 (φ1,η1,φ2,η2 )δ(Δφ −φ1 +φ2 )δ(Δη −η1 +η2 )dφ1 dη1 dφ2 dη2
Accept
∫

R2 (φ1,η1,φ2,η2 )=
C2 (φ1,η1,φ2,η2 )
ρ1(φ1,η1)ρ1(φ2,η2 )

=
ρ2 (φ1,η1,φ2,η2 )
ρ1(φ1,η1)ρ1(φ2,η2 )

−1

R2 =
N(N −1)
N 2 −1

Differential:

Integral:
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Part I: Some not so random thoughts…

• Role of Conservation Laws 
• Role of the Acceptance 
• Flow vs Non-Flow:   

• Collective vs. Non-Collective 
• System wide vs. Non-Flow 

• “Mediumization”
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Role of Conservation Laws (1)
Conservation laws and particle production processes determine correlations and fluctuations .
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Resonance decays, Finite Temperature Emission, Radial Flow:

Energy Momentum Conservation
Charge Conservation
Strangeness Conservation
etc…

Jets (Mini-Jets)
Number of pairs, triplets, etc 
within fixed acceptance 
depends on temperature, flow 
boost, jet energy, etc
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Example:                         Decays
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(c)

ρo → π + +π −

Decay at rest: Transverse Boost: β ∼ 0.9

      range determined by resonance mass, system temperature, 
radial boost velocity… 
==>  Net charge fluctuations. 

Back-to-back in 
azimuth

Kinematically 
focused to near-
side

Δy
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Role of Conservation Laws (2)
Conservation laws and particle production processes determine correlations.
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String Fragmentation, Color Tube Fragmentation

Multi-particle Longitudinal Long Range Correlations
Anisotropic Flow
Number of pairs, triplets depend on the acceptance…

Pressure
Gradient

Radial Flow — Hadron Production

uu dd uu uu dd

- + 0 - …
Charge ordering
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the contours elongate further along the direction 171 = 

172 as s increases. 
4) Along the line 171 = -172, corresponding to two 

particles with equal and opposite rapidities, the con- 
tours are more and more separated from each other 
with increasing 11711 + 11721. At the largest values of 
11711+11721 one even observes an enhancement in the 
correlation. Notice that the particles involved are 
emitted in opposite hemispheres near the beam direc- 
tions. This long-range correlation extends to larger 
1171 as s increases. In the following we interpret this 
phenomenon as evidence for a diffractive-like com- 
ponent in the data. 

5) The average value of R(171,172) is positive, con- 
sistent with the observation at NAL energies [11 ] 
of a positive value for the integral of the correlation 
/2. 

In fig. 2 we show the R(171,172) data points for 
several fixed 171 and variable 172, corresponding to 
slices across the contour plot at fixed abcissa. Again 
one sees the general features enumerated above; in 
particular, the dominant 1171 -1721 behaviour for 
small rapidities (central region) and the s-indepen- 
dence of the maximum value R(171 = 172 ~" 0) ~ 0.65. 
The range of the correlations in the central region is 
of the order of 2 units in the 17 variable; this correla- 
tion length is short compared to the maximum avail- 
able range. An increasing s-dependence is observed 
towards the edge of the plot, when the particles ap- 
proach the phase-space boundaries. We note that the 
features of the correlation function exhibited here 
agree well with the data of lower accuracy obtained 
at NAL [12] and also with the measured correlations 
between charged particles and 7's at the ISR [7]. Fits 
to the correlation function and extraction of the 
multiplicity moments are in progress as a part of the 
study of multiplicity distributions. 

In order to investigate the dynamical significance 
of the observed energy dependence, we show in fig. 3 
the value of R(171,172)~,=n~ versus q = (,v~/2M) tan 0 
(M is the proton mass). The data plotted are those 
lying along the diagonal 171 = 172 in the contour plots 

Fig. 2. Correlation function R(*/z, */2) for fixed */s versus */2. 
o: x/~ = 23 GeV; e :  x/~ = 62 GeV. The data in the region 
*/2 ~ - 3 in the last plot have been excluded owing to the 
secondary interactions discussed in the text. Errors shown 
are statistical only. 

363 

Example: ISR Results (p+p)
• S. R. Amendolia et al., PLB 48 (1974) 
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s = 23 GeV

-5
5

ALICE / STAR 
Acceptance

• Correlations extend over wide range of 
rapidities  
• Also in p-pBar @FNAL. 

• Such long range correlations must persist 
in A+A 
• Indicator: Lack of flow plane decor 

relation vs. eta gap. 
• Maybe modified by nuclear stopping, radial 

flow, late QGP hadronization, etc BUT they 
do NOT vanish… 

• They underlie fluctuation measurements…. 
• Note: Integral correlations for small eta 

range ARE NOT Poisson. 

R2 (η1,η2 )

η2

s = 62 GeV

Charge particles Longitudinal 
Correlations
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Poisson vs. Non-Poisson…
• Fluctuations do not become Poissonian when the 

acceptance is reduced. 
• Two particle density:  
• Poisson realized if: 

• If the differential correlation functions are non-poisson, 
so are the integrals… 

• But distinguishing non-Poisson from Poisson 
fluctuations may be challenging with integral correlations 
and finite statistics - when the acceptance is reduced.  
• Go differential!!!
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ρ2 (φ1,η1,φ2,η2 ) = N(N −1) P2 (φ1,η1,φ2,η2 )

P2 (φ1,η1,φ2,η2 )= P1(φ1,η1)P1(φ2,η2 )

ρ2 (φ1,η1,φ2,η2 )= ρ1(φ1,η1)ρ1(φ2,η2 )

N(N −1) = N 2

Statistical Independence



EMMI Workshop, Wuhan, China Oct 2017
Wayne State University 
College of Liberal Arts & Sciences 
Department of Physics and Astronomy

Two-Body Correlations Dilution vs System Size
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STAR, Phys.Rev. C68 (2003) 044905 6
|η| ≤ 0.5, as a function of the total multiplicity, M , mea-
sured in the pseudorapidity range |η| ≤ 0.75. The hor-
izontal bars on the data points reflect the width of the
multiplicity bins used in this analysis while the vertical
bars reflect statistical errors. We estimate the systematic
errors based on data taken and analyzed with different
trigger and analysis cuts, to be of the order of 2%. An
additional systematic uncertainty of the order of 3% is
derived by a separate analysis of different data subsets.
The dynamical fluctuations of the 5% most central colli-
sions then amount to ν+−,dyn = −0.00236±0.00006(stat)
±0.00012(syst). The dynamical fluctuations are finite
and negative: a clear indication that positive and nega-
tive particle production are correlated within the pseudo-
rapidity range considered (see Eq. 4). One observes the
strength of the dynamical fluctuations decreases mono-
tonically with increasing collision centrality. This can be
understood from the fact that more central Au+Au col-
lisions involve an increasing number of “sub-collisions”
(e.g. nucleon-nucleon collisions): the two-particle corre-
lations are thus increasingly diluted and the magnitude
of ν+−,dyn is effectively reduced.

We compare our results, for the most central colli-
sions, to those recently reported by the PHENIX col-
laboration [14] which measured net charge fluctuations
in terms of the relative variance ωQ = ⟨∆Q2⟩/Nch in
the rapidity range |η| < 0.35, and the angular range
∆Φ = π/2, for p⊥ > 200MeV/c. They reported a value
ωQ = 0.965± 0.007(stat) −0.019(syst) for the 10% most
central collisions. The large (unidirectional) systematic
error is reported to result from uncertainty in the correc-
tion applied for effects of finite detector efficiencies. In
order to compare the PHENIX result with the present
study, we use the expression in reference [7]

ν+−,dyn =
4

N+ + N−
(ωQ − 1) , (11)

The charged particle multiplicity in the PHENIX detec-
tor acceptance is 79 ± 5 for the 10% most central col-
lisions. This comparison gives ν+−,dyn = −0.0018 ±
0.0004 (stat) − 0.009 (syst) in agreement with the value
of ν+−,dyn = −0.00263 ± 0.00009(stat) ±0.00012(syst)
we measure for 11% central collisions. The agreement
is best if one considers the low bound of the PHENIX
measurement which is maximally corrected for finite ef-
ficiency (which is reflected in the systematic error). The
difference between the two results might be due, in part,
to dependence of the multiplicity fluctuations on rapidity
and azimuthal angle as well as acceptance effects.

It is important to consider the effects of charge con-
servation on the net charge fluctuations since they are
expected to be non-negligible even for small finite rapid-
ity coverage [7]. The contribution is estimated to be
−4/⟨N⟩4π where ⟨N⟩4π is the total number of charged
particles produced by the collisions. The PHOBOS col-
laboration has reported [15] that the total charged parti-
cle multiplicity amounts to 4200±470 in the 6% most cen-
tral Au+Au collisions at

√
sNN = 130 GeV. The charge
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FIG. 1: (a) Dynamical fluctuations, ν+−,dyn, measured in
|η| ≤ 0.5 as a function of the collision centrality estimated
with the total (uncorrected) multiplicity, M , in |η| < 0.75.
(b) ⟨N⟩ν+−,dyn measured in |η| ≤ 0.5 vs M (opened circles)
compared to the charge conservation limit (dotted line), res-
onance gas expectation based on ref. [5](solid line); and
HIJING calculation (solid squares)

conservation contribution to the measured dynamical
fluctuations is thus of the order of −0.00095 ± 0.0001,
i.e. 40% of the observed dynamical fluctuations.

We next discuss the centrality dependence of the fluc-
tuations. In central collisions, the measured dynamical
fluctuations, ν+−,dyn are expected to be reduced due to
dilution of the two-particle correlations. One expects
the magnitude of ν+−,dyn should scale inversely to the
number of sub-collisions producing particles. Assuming
the average number of particles produced by such sub-
collisions is independent of the collision centrality, one
then expects the fluctuations to scale inversely as the
charged particle multiplicity. The quantity ⟨N⟩ν+−,dyn

should therefore be independent of collision centrality if
no significant variation in the mechanism of the parti-
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Multiplicity fluctuations in Au+Au collisions at
√

sNN = 130 GeV
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Width of the Acceptance Matters
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FIG. 2: Fluctuations ν+−,dyn for the 6% most central colli-
sions as a function of the range of integrated pseudorapidities.
The expected limit due to charge conservation is shown as a
dotted line.

cle production arises with collision centrality. This no-
tion was suggested by Gazdzicki [12] and Mrowczyn-
ski [11] in terms of the fluctuation measure Φ which, as
shown in [7], is equal to ⟨N⟩ν+−,dyn/8 for ⟨N+⟩ ≈ ⟨N−⟩.
Fig. 1b shows the measured centrality dependence of
⟨N⟩ν+−,dyn, calculated with Eq. 10, for all charged par-
ticles produced in the pseudorapidity range |η| ≤ 0.5. In
this Figure, the charged particle multiplicity, N , is cor-
rected for finite detection efficiencies using correction fac-
tors which depend linearly on the charged particle mul-
tiplicity (TPC detector occupancy) with values ranging
from 85% to 70% for peripheral and central collisions re-
spectively [16]. The measured values range from −1 to
−1.4 and are approximately a factor of two larger than
the charge conservation limit, shown as a dotted line, in
Fig. 1b). This indicates dynamical fluctuations are not
only finite but in fact rather large. As discussed in de-
tail below, the values measured for ⟨N⟩ν+−,dyn however
fall short of predictions for a resonance gas in equilib-
rium (approximately −1.7; solid line) and for a scenario
involving a quark-gluon gas undergoing fast hadroniza-
tion (approximately -3.5; not shown in Fig. 1b) [5].
The measured values are in qualitative agreement with
a calculation based on HIJING (solid squares) [17]. In-
deed, the values predicted by HIJING are within 20%
of the measured values at all centralities. While the HI-
JING calculation is independent of collision centrality,
the experimental data exhibit a small but finite central-
ity dependence which is significant above the first bin
in Fig. 1b. The HIJING calculation does not feature
rescattering, and is therefore not expected to exhibit a
significant centrality dependence. The observed central-
ity dependence may then suggest there are rescattering
effects, or other dynamical effects with centrality, and its
interpretation requires further investigation.

The magnitude of the net charge dynamical fluctua-
tions is determined by the strength of the two-particle
correlations in the integrated rapidity range. Measure-

ments from p+p collisions at the ISR and p+p collisions
at FNAL indicate that the relevant rapidity interval for
two-particle correlations is approximately one unit. One
thus expects the dynamical fluctuations to exhibit a mild
dependence on the rapidity range used for the measure-
ment [7]. Fig. 2 shows the measured dynamical fluctu-
ations (filled circles) as a function of the pseudorapidity
range. The pseudorapidity integration range is varied
from −0.1 < η < 0.1 to −1.0 < η < 1.0 in discrete steps
of 0.1 units of pseudorapidity. Error bars shown are sta-
tistical only. Focusing on the region in Fig. 2 where
systematic effects due to finite are expected to be small,
we examine the data for η > 0.4. One observes the abso-
lute value of the the dynamical fluctuations is largest in
this range for |η| ≈ 0.4, and that it decreases monoton-
ically for larger acceptance without, however, reaching
the charge conservation limit. One finds |νdyn| decreases
by 35-40% while the integrated pseudorapidity range is
increased by a factor of 5 from 0.4 to 2 pseudorapidity
units. The dependence of dynamical fluctuations on the
experimental acceptance is rather modest. In contrast,
the Φ measure increases approximately by a factor of 10
from −0.1 < η < 0.1 to −1.0 < η < 1.0 due to its explicit
dependence on the pseudorapidity bin size.

We next consider the above results in the light of cor-
relation functions measured in p+p and p+ p̄ collisions at
CERN and FNAL [8, 18, 19] with the use of Eq. 4. To
account for the unavailability of p+p comparison data at
the same energy as RHIC, an interpolation was made us-
ing results obtained at lower and higher collision energies
(parameterization from [20]). Based on results published
in Refs [8, 18, 19], we also note that the correlation func-
tion for oppositely charged particles, R+−(y+ ≈ y−), is
found to be approximately twice as strong as the same
sign particles correlations, R++ ≈ R−− [8, 9], and that
it is independent of the collision energy. The CERN and
FNAL measurements [8, 18, 19] find the single charged
particle and two-particle (charged-charged) pseudorapid-
ity densities to be respectively ρ1(η = 0) ≈ 2.06 and
C2(0, 0) = ρ2(η1 = 0, η2 = 0) − ρ1(η1 = 0)ρ1(η2 =
0) ≈ 2.8. The charged-charged correlation integral
Rcc = (R++ + R−− + 2R+−)/4 is thus Rcc ≈ 0.66 (see
ref. [7]). Furthermore, assuming equal multiplicities of
positively and negatively charged particles, one finds for
the charged-charged correlation Rcc ≈ 1.5R++, which we
use to estimate the correlation measured in this work as
R̄++ + R̄−− − 2R̄+− ≈ −2R̄++ ≈ 4R̄cc/3 ≈ 0.88. The
pseudorapidity densities are very different in p+p and
A+A collisions. Under assumption that the correlations
are due to production in a finite number of sources (clus-
ters), they should be inversely proportional to the parti-
cle density. In the 5% most central Au+Au collisions, the
pseudorapidity charged particle density (dN/dη) is about
526±2(stat)±36(syst) [16] compared to approximately
2.06 in pp̄ collisions. Such a dilution would give for the
correlation function a value of 0.88 · 2.06/526 ≈ 0.0034,
in qualitative agreement with the measured values for
Au+Au collisions presented in this paper. We stress that
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Pt Correlations more sensitive to v3 
than number correlations

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC
ALICE, Phys. Rev. Lett. 118 (2017)162302.
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Measurements of particle production and their correlations in heavy-ion collisions at the Relativistic18

Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have provided very compelling ev-19

idence that the produced matter is characterized by extremely high temperatures and energy densities20

consistent with a deconfined, but strongly interacting quark-gluon plasma (sQGP). Evidence for the21

production of the sQGP is provided by observations of large suppression of particle production at mo-22

menta pT & 3 GeV/c relative to that observed in pp collisions, strong suppression of away-side particles23

observed in two-particle number correlations, as well as by anisotropic flow studies (anisotropies in24

particle azimuthal distributions relative to the reaction plane defined by the beam axis and a line con-25

necting the centers of colliding nuclei) [1–11]. The comparison of measured flow coefficients, vn,26

with predictions from hydrodynamical models indicate that the sQGP has a vanishingly small shear27

viscosity over entropy density ratio [12]. Furthermore, the observation of an approximate number of28

constituent quark scaling of flow coefficients in the 2 < pT < 4 GeV/c range, suggested as a signa-29

ture of a deconfined medium [13, 14], was reported by RHIC and LHC experiments [15, 16]. These30

results imply that the two-particle number correlations observed in the region of low pT (< 2 GeV/c),31

corresponding to the bulk of particle production, are largely determined by anisotropic flow. Such flow32

dominance is manifested, in particular, by an approximate factorization of the measured flow coeffi-33

cients, VnD(h1, pT,1,h2, pT,2) = hcos(nDj)i = hvn(h1, pT,1)vn(h2, pT,2)i, observed for pairs of particles34

at relative pseudorapidity Dh > 0.8, in different transverse momentum bins up to pT ⇡ 3�5 GeV/c [17].35

Two-particle transverse momentum correlations [18–22] provide additional insights into the dynamics36

of multiparticle production and can be used to further examine the flow dominance of two-particle cor-37

relation functions. One expects, in particular, that in the presence of anisotropic flow, the differential38

transverse momentum correlator hDpTDpTi should feature azimuthal Fourier decomposition coefficients39

calculable with a simple formula, hereafter called the flow ansatz, in terms of the regular and pT weighted40

flow coefficients [18]. Such a simple relation, discussed in more details below, is not expected for particle41

production arising from processes not related to the common symmetry plane, known as non-flow, such42

as jets or resonance decays. An agreement between the Fourier coefficients of the hDpTDpTi correlator43

and those calculated with the flow ansatz should thus provide additional evidence of the dominance of44

collective flow effects.45

In this Letter, we present the first measurements of the differential transverse momentum correlations in46

Pb–Pb collisions at
p

sNN = 2.76 TeV in terms of the dimensionless correlator P2 defined as47

P2 =
hDpTDpTi(Dh ,Dj)

hpTi2 =
1

hpTi2

R pT,max
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r2(~p1,~p2) DpT,1DpT,2 d pT,1d pT,2
R pT,max

pT,min
r2(~p1,~p2) d pT,1d pT,2

, (1)48

where DpT,i = pT,i�hpTi, with hpTi=
R

r1 pT d pT /
R

r1 d pT, the inclusive average transverse momen-49

tum of particles observed in the pT,min  pT  pT,max range. The quantities r1 and r2 represent single50

and two-particle densities, respectively. For particle correlations induced strictly by anisotropic emission51

relative to the reaction plane, the Fourier coefficients of P2, vn[P2], should be determined by regular and52

the pT weighted flow coefficients defined according to the following flow ansatz [18]:53

vn[P2]⇠= vpT
n /hpTi� vn, (2)

where vn and vpT
n =

R
r1vn(pT)pTd pT/

R
r1d pT are the regular, and pT weighted coefficients, respec-54

tively [18, 23]. Thus, we shall compare the Fourier coefficients of the P2 correlator to values expected55

from this ansatz based on coefficients vn and vpT
n measured with traditional flow methods, e.g., the scalar56

product method [23].57

This study is based on an analysis of a 14⇥106 events subset of a sample of minimum bias (MB) trigger58

events recorded with the ALICE detector during the LHC Run 1 in 2010. Detailed descriptions of the59

ALICE detector, its subsystems, and their respective performance have been reported in [24–27]. For this60

study, the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) were used to reconstruct61
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• A pair “eta gap” is required to suppress non-flow effects 
in differential R2 or P2 correlations & flow measurements.

• So why not in integral correlation measurements???

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC
ALICE, Phys. Rev. Lett. 118 (2017)162302.
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ALICE, Phys. Lett. B723 (2013) 267 

Width of BF depends on 
centrality.
Fluctuations depend on 
radial flow.

Charge correlations using the balance function in Pb–Pb collisions ALICE Collaboration
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Fig. 2: (Color online). Balance function as a function of ∆η for different centrality classes: 0-5% (a),
30-40% (b) and 70-80% (c). Mixed events results, not corrected for the detector effects, are shown by
open squares. See text for details.

teraction of particles with the material), all selected tracks were required to have at least 70
reconstructed space points out of the maximum of 159 possible in the TPC. The ⟨χ2⟩ per de-
gree of freedom the momentum fit was required to be below 2. To further reduce the contam-
ination from background tracks, a cut on the distance of closest approach between the tracks
and the primary vertex (dca) was applied (dcaxy/dxy)2+ (dcaz/dz)2 < 1 with dxy = 2.4 cm
and dz = 3.2 cm. In the parallel analysis, with the combined tracking of the TPC and the
ITS, the values of dxy = 0.3 cm and dz = 0.3 cm were used, profiting from the better dca res-
olution that the ITS provides. Finally, we report the results for the region of |η| < 0.8 and
0.3< pT < 1.5 GeV/c. The pT range is chosen to ensure a high tracking efficiency (lower cut)
and a minimum contribution from (mini-)jet correlations (upper cut).

4 Results
As discussed in the introduction, the correction factors f+−, f−+, f++, and f−− are needed
to eliminate the dependence of the balance function on the detector acceptance and tracking
inefficiencies. The tracking efficiency is extracted from a detailed Monte Carlo simulation of
the ALICE detector based on GEANT3 [27].It depends on the particle’s transverse momentum,
rising steeply from 0.2 up to 0.5 GeV/c, where it reaches the saturation value of 85%. The
acceptance part of the correction factors, α(∆η,∆ϕ), is extracted frommixed events. The mixed
events are generated by taking all two-particle non-same-event combinations for a collection
of a few (≈ 5) events with similar values of the z position of the reconstructed vertex (|∆Vz| <
5 cm). In addition, the events used for the event mixing belonged to the same centrality class and
had multiplicities that did not differ by more than 1-2%, depending on the centrality. Figure 1
presents the correction factor for the distribution of pairs of particles with opposite charge as a

6

Charge correlations using the balance function in Pb–Pb collisions at 2.76 TeV

Charge correlations using the balance function in Pb–Pb collisions ALICE Collaboration
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Fig. 3: (Color online). Balance function as a function of ∆ϕ for different centrality classes: 0-5% (a),
30-40% (b) and 70-80% (c). Mixed events results, not corrected for the detector effects, are shown by
open squares. See text for details.

function of the relative pseudorapidity and azimuthal angle differences for the 5% most central
Pb–Pb collisions. The maximum value is observed for ∆η = 0 and is equal to the pT-integrated
single particle efficiency. The distribution decreases to ≈ 0 near the edge of the acceptance i.e.
|∆η| ≈ 1.6. This reduction reflects the decrease of the probability of detecting both balancing
charges as the relative pseudorapidity difference increases. The correction factor is constant as
a function of ∆ϕ .

The measured balance function is averaged over positive and negative values of ∆η (∆ϕ) and
reported only for positive values. The integrals of the balance function over the reported region
are close to 0.5, reflecting the fact that most of the balancing charges are distributed in the
measured region.

Figure 2 presents the balance functions as a function of the relative pseudorapidity ∆η for
three different centrality classes: the 0-5% (most central), the 30-40% (mid–central) and the
70-80% (most peripheral) centrality bins. It is seen that the balance function, in full circles,
gets narrower for more central collisions. Figure 2 presents also the balance functions for
mixed events, not corrected for detector effects, represented by the open squares. These balance
functions, fluctuate around zero as expected for a totally uncorrelated sample where the charge
is not conserved.

Figure 3 presents the balance functions as a function of the relative azimuthal angle for the
same centrality classes as in Fig. 2. The balance functions calculated using mixed events and
not corrected for the tracking efficiency exhibit a distinct modulation originating from the 18
sectors of the TPC. This modulation is more pronounced for more central collisions, since the
charge dependent acceptance differences scale with multiplicity. The efficiency-corrected bal-
ance functions, represented by the full markers, indicate that these detector effects are success-
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Fig. 4: (Color online). The centrality dependence of the width of the balance function ⟨∆η⟩ and ⟨∆ϕ⟩,
for the correlations studied in terms of the relative pseudorapidity (a) and the relative azimuthal angle
(b), respectively. The data points are compared to the predictions from HIJING [28], and AMPT [29].

central collisions. On a quantitative level though, the widths in both projections are larger than
the ones obtained in the case where hadronic rescattering is included. This can be explained by
the fact that within this model, a significant part of radial flow of the system is built during this
very last stage of the system’s evolution. Therefore, the results are consistent with the picture
of having the balancing charges more focused under the influence of this collective motion,
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• Width of Balance Function depends 
on centrality, radial boost, life time 
of system (delayed hadronization)

• Effective Charge conservation 
effects change w/ system size, 
impact parameter, beam energy.

• The Acceptance Width Matters But 
its effects can be measured and 
modeled.

• The model is better if based on a 
measurement!

R2
(CD )(Δφ,Δη)= 1

2 R2
(US )(Δφ,Δη)− R2

(LS )(Δφ,Δη)⎡⎣ ⎤⎦

R2
(CD )(Δφ,Δη)∝ Balance Function
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Core/Corona Contributions 
• EPOS 3.0 reproduces many observables 

• Particle yields, Species ratios, Average 
Momentum, Anisotropic flow 

• For small and large systems, collision 
centrality dependence  

• Suggests/Implies 
• Core/Corona contributions and 

distinctions are “real” 
• Core vs. Corona contributions to 

charge/strangeness/baryon 
correlations and fluctuations may be 
different and thus must be accounted for. 

• One must understand the energy 
dependence of the core vs. corona 
contributions to charge correlations/
fluctuations. 

• But…

15

Hydro Core

“p-p like” corona
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Core/Corona Contributions 

16
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Unfortunately EPOS does not reproduce CI or CD charge R2 correlation 
functions in peripheral to central collisions.

Fails to reproduce ALICE data.
Core contributions mishandled by Cooper-Frye prescription?

S. Basu, V. Gonzalez, C.P., et al., in preparation
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Fig. 1: Correlation functions for identical-particle pairs: p+p++p�p�, K+K++K�K�, pp+pp, LL+LL (right
panel) and particle–anti-particle pairs: p+p�, K+K�, pp, LL (left panel). Plots are mirrored around Dh = 0.

that it can be qualitatively and quantitatively reproduced by “femtoscopic” correlations mentioned above.
Moreover, the Fermi-Dirac suppression cannot be present for non-identical baryon pairs, like pL+ pL,
which were also measured. The results are shown in Fig. 2. One observes that the characteristic shape
of anti-correlation is preserved also in this case. Therefore, we must reject the hypothosesis that Fermi-

8

Some surprises too
Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at 7 TeV
ALICE, arXiv:1612.08975v1 
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Dirac quantum statistics is the cause of of the observed depression for baryon–baryon pairs. Similar
conclusions were reached based on observations of baryon production in e+e� collisions, see Ref. [35].

The comparison of all baryon pairs, shown as a function of Dj and integrated over Dh, can be seen in
Fig. 3. The shape of the correlation function for all studied baryon–baryon (and baryon–anti-baryon)
pairs is similar, regardless of particles’ electric charge. Therefore, the depression is a characteristic
attribute connected solely to the baryonic nature of a particle.

In order to check whether some fraction of the observed effect depends on the momentum transfer dur-
ing the interaction, the pp+ pp sample was divided into two transverse momentum ranges. The cor-
relation functions obtained with these selection criteria are shown in Fig. 4 and show even stronger
anti-correlation for higher transverse momenta of particles in the pair.
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Fig. 2: Correlation functions for combined pairs of (left) pL+pL and (right) pL+pL. Plots are mirrored around
Dh = 0.

An alternative interpretation of the observed depletion is that this structure is the manifestation of a
local conservation of baryon number influencing the hadronization process, as argued in Ref. [35] in
the analysis of e+e� collisions at

p
s = 29 GeV. By “local” we denote the production of particles close

together in the phase-space (e.g. in the same mini-jet), as opposed to “global” conservation which applies
to all particles produced in an event. In string hadronization models, the “local” mechanism requires that
two baryons produced in a single fragmentation are separated by at least one particle with a different
baryon number [35]. The production of two baryons in a mini-jet would also be suppressed if the parton
energy is small when compared with the minimum energy required to produce four baryons (2 particles
+ 2 anti-particles, the minimum amount to satisfy the law of local baryon number conservation when
two baryons are produced in single mini-jet). At a collision energy of

p
s = 29 GeV it was reasonable

to assume that the energy constraint would dominate. However, at LHC energies this constraint should
have less of an impact on the observed structures. We tested this expectation by employing Monte Carlo
generators which include local baryon number conservation: PYTHIA (6.4 and 8) and PHOJET (1.12).
The results of MC simulations are discussed in the next section.

6 Comparison to Monte Carlo models

The correlation functions measured in this work are compared to predictions of Monte Carlo (MC)
models. The following MC event generators were used: PYTHIA6.4 tunes Perugia-0 and Perugia-
2011 [36, 37], PYTHIA8 Monash tune [38, 39] and PHOJET version 1.12 [40]. PYTHIA, widely used
for simulations of high-energy collisions, combines perturbative QCD for large momentum-transfer in-
teractions and phenomenologically motivated models for the description of soft hadronic interactions;
the Lund string fragmentation model [41] is used for hadronization. PYTHIA has many free param-
eters which are optimized to best describe specific measurements. These parameters are collected in

9

p+p @ 7 TeV
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Other models get it wrong too ;-)
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Fig. 6: Dh integrated projections of correlation functions for combined pairs of (a) p+p+ +p�p�, (b) K+K+ +

K�K�, (c) pp+pp and (d) LL+LL, obtained from ALICE data and four Monte Carlo models (PYTHIA6 Perugia-
0, PYTHIA6 Perugia-2011, PYTHIA8 Monash, PHOJET). Bottom panels show ratios of MC models to ALICE
data. Statistical (bars) and systematic (boxes) uncertainties are plotted.

tions. The away-side correlation is similar to the experimental data for all pair combinations.

7 Conclusions

Angular correlations of identified particles were analyzed in pp collisions at
p

s = 7 TeV recorded with
the ALICE experiment. The studies were done separately for particle/anti-particle pairs (for like-sign and
unlike-sign pairs) and for four particle species (pions, kaons, protons, lambdas). A significant depression
around (Dh,Dj)⇡ (0,0) is observed for the baryon–baryon and anti-baryon–anti-baryon pairs, which is
not seen for baryon–anti-baryon pairs.

The analysis was complemented by Monte Carlo model calculations using the PYTHIA6.4 Perugia-0,
Perugia-2011, PYTHIA8 and PHOJET (v. 1.12), two event generators designed to simulate high mo-
mentum fragmentation (i.e. jets). While the correlation functions of mesons are well-reproduced by
the studied models, the ones of baryons in simulations are significantly different than those in collision
data. The most surprising result is obtained for baryon–baryon (antibaryon–antibaryon) pairs where the
models are unable to reproduce even qualitatively the depletion which is observed experimentally. In

12
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to describe the non-femtoscopic correlations underlying the Bose-Einstein statistics signal in femtoscopic
measurements of identical pions [32] and identical kaons [33], respectively.
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Fig. 5: Dh integrated projections of correlation functions for (a) p+p�, (b) K+K�, (c) pp, and (d) LL pairs ob-
tained from ALICE data and four Monte Carlo models (PYTHIA6 Perugia-0, PYTHIA6 Perugia-2011, PYTHIA8
Monash, PHOJET) at

p
s = 7 TeV. Bottom panels show ratios of MC models to ALICE data. Statistical (bars) and

systematic (boxes) uncertainties are plotted.

However, the models fail to reproduce baryon correlations (both particle–particle and particle–anti-
particle pairs). First of all, no depression is observed for protons and lambdas for any of the studied
models. Instead, a near-side peak is present for particle–particle pairs. Furthermore, additional stud-
ies were performed, concluding that the anti-correlation cannot be reproduced by tuning parameters of
PYTHIA6.4. Apparently all models frequently produce two baryons close in phase-space (within the
mini-jet peak). These results argue against the hypothesis that the combination of energy and baryon-
number conservation is enough to explain the observed near-side anti-correlation, since both local baryon
number and energy conservation laws are implemented in all studied models.

For baryons, pronounced differences are also seen for particle–anti-particle pairs; the magnitude of the
near-side peak is much higher in all MC models than in ALICE data. The universality of this behaviour
for all baryon pairs is further confirmed with the studies of the proton–lambda correlations, as shown in
Fig. 7. The results show that pL+ pL correlation functions follow the trend common for all baryon–
baryon pairs, and correlation functions of pL+ pL behave similarly to the baryon–anti-baryon correla-

11

PYTHIA,  p+p @ 7 TeV

p-p “base-line” rather unexpected even at 7 TeV!!!
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System Size & Lifespan 
• Inclusive particle production, e.g., 

strangeness saturation, suggests 
local thermalization is achieved 
rather rapidly. 

• Yet, if one probes the long distance 
scale behavior, there has to be 
time for the system to relax into a 
medium, i.e., to “mediumize.” 

• This should be particularly 
important for the spatial 
correlation length one wishes to 
probe with fluctuations. 

• But even at the speed of light, 
opposing sides of the collision 
systems remain causally 
disconnected until freeze out 
— and the speed of sound is 
likely more relevant in this 
context…

19

• The left end side is not “informed” of the 
right end side until the system freezes out.

• Transverse long range behavior does not 
materialize before system break-up

• The correlation length actually probed is 
probably quite short.
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System Size & Lifespan (2)
• Capacity to mediumize and sense large 

correlation lengths must consequently 
depend on 
• collision centrality 
• system size 
• system lifetime  

• Sensitivity to variations of the spatial 
correlation  length consequently must 
depend on  
• produced multiplicity 
• system size 
• beam energy 
• as well as EOS and proximity to C.P.

20
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Berdnikov-Rajagopal (2000): ξ ~ 2− 3 fm
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Measure Factorial Moments and Corr Fct. 
• Integral correlations are 

• (slow) functions of the acceptance 
• PARTLY determined by non-flow phenomena, not just system wide properties.  

• Eliminate/Suppress non-flow effects  
• Require an eta-gap in measurement of cumulants? 
• Better still: measure differential correlations  

• e.g., R4 (Differential version of Volker/Adam’s C4) suppress non-flow thereby 
focusing on system wide properties. 

• Side benefit: differential correlations are more easily corrected for detector 
effects. 

• Factorial moments are more robust than integral cumulants 
• Note: Puzzling features of STAR’s R2 Measurement at 19.6 GeV … show 

R2 is more sensitive to details of the detector response BUT when these 
details are understood, the integral of R2 shall be more reliable.

21
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Diversify Types of Measurements
• For instance:  

• Width and strength of Balance 
Functions of R2 and P2 vs. beam energy 

• Softening of the equation implies change 
in radial flow which implies 
• changes in kinematic focusing 
• broadening of the width of balance 

function 
• Caveat:  

• reduction in beam energy implies 
changes in particle production 
mechanisms that may feature different 
rapidly spans.

22
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Part II: Some Technical Considerations

• Acceptance: 

•Cannot be corrected for but can be varied or 
averaged across, e.g., vs. 

• Efficiency: 

•Single and Pair Efficiencies can be accounted for with 
robust ratios, weight technique, etc.

• Contamination:

•Secondaries contamination identifiable as extra features or 
correlation shape changes in differential correlation 
functions.

23

η = η1 +η2( ) / 2

S. Ravan, P. Pujahari, S. Prasad, C.A.P.,  Phys.Rev. C89 (2014) 024906
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Efficiency & Robustness (1)

• Model the Probability of observing n particles given N (in a 
given “bin”) were produced with binomial distribution.

• Model the Probability of observing particle fluctuations…

• Singles

• Pairs

Pdet (n | N;ε ) =
ε N (1− ε )N−n

n!(N − n)!

24

PM (n(η1),n(η2 ) | N(η1),N(η2 );ε1,ε2 ) = PT (N(η1),N(η2 ))
ε1

N (η1 )(1− ε1)
N (η1 )−n(η1 )

n(η1)!(N(η1)− n(η1))!
ε2

N (η2 )(1− ε2 )
N (η2 )−n(η2 )

n(η2 )!(N(η2 )− n(η2 ))!N1,N2=1

∞

∑

True Probability distributionMeasured  Probability distribution

PM (n(η1) | N(η1);ε1, ) = PT (N(η1))
ε1

N (η1 )(1− ε1)
N (η1 )−n(η1 )

n(η1)!(N(η1)− n(η1))!N1=1

∞

∑

Measured  Probability distribution True Probability distribution
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•Singles Average
•True

•Measured

•Pair Averages
•True

•Measured

Efficiency & Robustness (1)

N = PT (N )∫ NdN

n = PM (n)∫ ndn
n = PT (N )dN nPdet (n | N;ε )∫ dn∫ = ε PT (N )N dN∫
n = ε N

25

N1N2 = Pp (N1,N2 )∫ N1N2dN1dN2

n1n2 = Pm (n1,n2 )∫ n1n2dn1dn2

n1n2 = ε1ε2 N1N2
Correct for any True  PDF 
Only requires binomial sampling.
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Efficiency & Robustness (III)

• Correlation function measurement

• Goal: 

• “Raw” Measurement

• Ratio Fct

True

MeasuredC2
(measured )(η1,η2 ) =

1
Δη2 n(η1)n(η2 ) − n(η1) n(η2 )

= 1
Δη2 ε1(η1)ε2 (η2 ) N(η1)N(η2 ) − N1(η1) N2 (η2 ){ }

C2
(True)(η1,η2 ) = ρ2 (η1,η2 )− ρ1(η1)ρ1(η2 )

R2
(Measured )(η1,η2 )=

n(η1)n(η2 )
n(η1) n(η2 )

−1

=
ε1(η1)ε1(η2 ) N(η1)N(η2 )
ε1(η1)ε1(η2 ) N(η1) N(η2 )

−1=
N(η1)N(η2 )
N(η1) N(η2 )

−1

R2
(Measured )(η1,η2 )= R2

(True)(η1,η2 )

Efficiencies cancel >>> Robust Observable
26
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Folding of Singles vs Event Mixing

• Ratio R requires product of single yields
• Can be obtained from actual singles

• Can be obtained from mixed events 

RM (η1,η2 ) =
n1(η1)n2 (η2 )
n1(η1) n2 (η2 )

−1

RM
(mixed )(η1,η2 )=

n1n2 (η1,η2 )
n1(η1) n2 (η2 )

=
n1n2 (η1,η2 ) same
n1n2 (η1,η2 ) mixed

−1

No event 
mixing 
required

Greater 
flexibility 
w/ cuts

27
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Evaluation of Normalized CumulantsTwo Methods

• Method 1: Ratio of averages (Common Approach)
•Measure pair yields (same and mixed) directly vs Δη.

• Calculate R(Δη) by taking the ratio of same to mixed.

•Method 2: Average of Ratio
•Measure R(η1,η2) by taking the ratio of same to mixed.

• Average out     dependence, i.e. project onto Δη to get R(Δη)η

28

RM (Δη) =

1
Ω(Δη)

ρ2 (Δη,η )dη
accept
∫

1
Ω(Δη)

ρ1⊗ ρ1(Δη,η )dη
accept
∫

−1

RM (Δη) =
1

Ω(Δη)
R2 (Δη,η )dη

accept
∫ = 1

Ω(Δη)
ρ2 (Δη,η )

ρ1⊗ ρ1(Δη,η )
−1

⎛
⎝⎜

⎞
⎠⎟
dη

accept
∫

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

Ω(Δη) = 2ηo − Δη
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Method 1 vs. Method 2: Correlation Model

• Correlation Model:

• Longitudinal Model w/ Two-particle emission correlated vs. 

η1

η2

Δη =η1 −η2

η = η1 +η2( ) / 2

• Assumed factorization of the dependence 
on the relative and average pseudorapidity. 

• Factorization may not be realized 
in practice

C(Δη,η )∝ exp −
Δη2

2σ Δη
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

η 2

2ση
2

⎛

⎝
⎜

⎞

⎠
⎟
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Method 1 vs. Method 2: Efficiency Model

• Use a simple but non trivial correlation model

• Use a simple model of the detection efficiency and edge 
effects.

ε(η) = εq (η)exp −
η −η<( )2

2σε
2

⎛

⎝
⎜

⎞

⎠
⎟     for   η <η<

= εq (η)                                for   η< <η <η>

= εq (η)exp −
η −η>( )2

2σε
2

⎛

⎝
⎜

⎞

⎠
⎟     for   η >η>

εo  =1

εq (η) = 1+α η −ηo( ) + β η −ηo( )2

30
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Efficiency, Pair Yield

• Efficiency

• Pair Yield

31
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Method 2: Results

Product of singles

R2 (Method 2)

32

Perfect Reconstruction for any factorized 
efficient model w/ sufficient statistics
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e�ciency.

of the deviation strongly depends on the ⌘ dependence
of the correlation function. If the dependence is weak, or
the correlation function essentially constant within the ⌘
acceptance, than deviations are very small. However, if
both the e�ciency and the correlation function exhibit
rapid dependence on ⌘, than arbitrarily large deviation
may occur between the measured and actual correlation
function. We thus conclude that Method 1 is non ro-
bust for measurements of correlations as a function of
�⌘. It however may remain reliable and su�cient in a
wide variety of contexts and analyses, provided of course,
as for Method 2, the pair e�ciency factorizes. Wherever
high accuracy is required and strong variations of the ef-
ficiency throughout the acceptance are present, Method
2 is however strongly advised.

There are several instrumentals e↵ects that may break
the factorization. We discuss three such e↵ects in sec-
tions VII, ?? and IX. However, we first discuss in the
section the case of correlation functions measured as a
function of the di↵erence between two particles azimuthal
angles, ��, for which periodic boundary conditions lead
to considerable simplifications and robustness of correla-
tion functions obtained with Method 1 as well as Method
2.

B. Azimuthal Distributions

Correlation functions measured as a function of the
relative azimuthal angle of emission of two particles con-
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Ratios of the distributions R2(�⌘) obtained by Method 2 for imperfect e�ciency to that obtained with perfect e�ciency.
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of the deviation strongly depends on the ⌘ dependence
of the correlation function. If the dependence is weak, or
the correlation function essentially constant within the ⌘
acceptance, than deviations are very small. However, if
both the e�ciency and the correlation function exhibit
rapid dependence on ⌘, than arbitrarily large deviation
may occur between the measured and actual correlation
function. We thus conclude that Method 1 is non ro-
bust for measurements of correlations as a function of
�⌘. It however may remain reliable and su�cient in a
wide variety of contexts and analyses, provided of course,
as for Method 2, the pair e�ciency factorizes. Wherever
high accuracy is required and strong variations of the ef-
ficiency throughout the acceptance are present, Method
2 is however strongly advised.

There are several instrumentals e↵ects that may break
the factorization. We discuss three such e↵ects in sec-
tions VII, ?? and IX. However, we first discuss in the
section the case of correlation functions measured as a
function of the di↵erence between two particles azimuthal
angles, ��, for which periodic boundary conditions lead
to considerable simplifications and robustness of correla-
tion functions obtained with Method 1 as well as Method
2.

B. Azimuthal Distributions

Correlation functions measured as a function of the
relative azimuthal angle of emission of two particles con-

Method 2 Perfect

Small deviations
Method 1 rather robust in view 

of large inefficiencies put in
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Why?

• If efficiency, yield, or correlation varies with avg-rapidity, 
then g or R2 cannot be factorized out of the integrals. 
• The numerator and denominator are in general NOT equal.

• Method 1 is only approximately robust - for slow varying 
functions

• Note: not a problem in azimuthal correlation because of 
periodic boundary conditions.

9
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FIG. 4: (Color Online) Product of singles ⇢1⇢1 vs. ⌘1, ⌘2 for (a) perfect e�ciency, (b) flat response with smooth edges, and
non-linear response with edge e↵ects shown for ✏

o

= 0.7,↵ = 0.4, � = 0.4.

(a)

1η
-1.5 -1 -0.5 0 0.5 1 1.5

2
η

-1.5
-1

-0.5
0

0.5
1

1.5

1ρ 1ρ/ 2ρ

0

0.1

0.2

0.3

(b)

1η
-1.5 -1 -0.5 0 0.5 1 1.5

2
η

-1.5
-1

-0.5
0

0.5
1

1.5

1ρ 1ρ/ 2ρ

0

0.1

0.2

0.3

(c)

1η
-1.5 -1 -0.5 0 0.5 1 1.5

2
η

-1.5
-1

-0.5
0

0.5
1

1.5

1ρ 1ρ/ 2ρ

0

0.1

0.2

0.3

FIG. 5: (Color Online) Pair detection e�ciency dependence on ⌘1, ⌘2 for (a) perfect e�ciency, (b) flat response with smooth
edges, and non-linear response with edge e↵ects shown for ✏

o

= 0.7,↵ = 0.4, � = 0.4.

2 however corrects for detection e↵ects by dividing the
pair yield by the product of singles ⇢1 ⇥ ⇢1 obtained ei-
ther by a mixed event technique or by multiplying the
singles spectra onto itself. The product of singles ⇢1⇥⇢1
corresponding to the same three cases are shown in Fig.
4. They are used to divide out the e�ciencies and obtain
the pair to single yield ratio ⇢2/⇢1⇢1 displayed in Fig. 5.
One verifies by direction inspection that the three dis-
tributions are identical as expected from the definition
of Method 2 and the assumed factorization of e�ciency
used in generating the plots. Fig. 6 (a) presents the
⌘ averaged distributions, R2(�⌘), obtained by calcula-
tions with perfect e�ciency, flat response with smooth
edges, and non-linear response with edge e↵ects shown
for ✏

o

= 0.7,↵ = 0.4, � = 0.4. Fig. 6 (b) displays the
ratio of distributions obtained with imperfect e�ciency
to that obtained for perfect e�ciency and illustrates that
all distributions are virtually identical and perfectly cor-
rected by Method 2 as expected.

Correlation analyses are however routinely carried out
with Method 1 rather than Method 2. Given Method
1 also uses a ratio of pair yield and product of singles,
albeit computed directly as a function of �⌘, one would
expect it might produce robust correlation functions, i.e.
independent of detection e�ciency. We proceed to show
that while Method 1 yields results that are approximately
robust, it may in fact produce correlation function that
arbitrarily deviate from the actual distribution. Rather

than calculating ratio of pair yields and product of singles
as a function ⌘1 and ⌘2, Method 1 uses yields calculated
explicitly as a function of �⌘. The ⌘ averaging is carried
out independently for pairs and product of singles (or
mixed events). The ratio R2(�⌘) measured with method
1 can be formally written as follows.

R2(�⌘)Method1 =

R
g(�⌘, ⌘)Rtrue

2 (�⌘, ⌘)d⌘R
g(�⌘, ⌘)d⌘

(35)

where Rtrue

2 is the true value of the correlation function,
and g(�⌘, ⌘) = ✏1⇥✏1⇥⇢1⇥⇢1(�⌘, ⌘) is, in general, a non
trivial function of �⌘, ⌘. Obviously, the function g can-
not be factorized out of the integrals. Method 1 is conse-
quently intrinsically non-robust. This unfortunate con-
clusion is illustrated with the simple correlation model
introduced in sec.IV. Figure 7 (left) displays functions
R2(�⌘) obtained with Method 1 for perfect e�ciency
(solid red), a flat response with smooth edges (dash
red), and non-linear response with edge e↵ects shown for
✏
o

= 0.7, ↵ = 0.2, � = 0.2 (dash blue), ✏
o

= 0.56, ↵ = 0.3,
� = 0.3 (dash purple), ✏

o

= 0.48, ↵ = 0.4, � = 0.4 (solid
light blue). One finds that the distributions are remark-
ably similar in spite of the large di↵erences of e�ciency
used in their calculations. Di↵erences exist however and
are easily visualized in Fig. 7 (right) from the ratios of
distributions to that obtained for perfect e�ciency. Dif-
ferences are maximum near �⌘ ⇠ 0 and amount to de-
viations of a few percent only. Note that the magnitude

34

g(Δη,η )= ε1(η1)ρ1(η1)⊗ε1(η2 )ρ1(η2 )
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Dependence on z-vertex

• ALICE, STAR Acceptances are functions of the vertex 
position.

• Use a simple model as before...

z

35
S. Ravan, P. Pujahari, S. Prasad, C.A.P.,  Phys.Rev. C89 (2014) 024906
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Efficiency Factorization???

• Local Factorization:

• Loss of “Global” Factorization:
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FIG. 8: (Color Online) Model of the vertex position, z depen-
dence of the detection e�ciency used in sec.VII. See text for
description of the model.

vertex position. The number of pairs detected at pseudo
rapidity di↵erence of the order of 2⌘

o

is therefore likely
to fluctuate dramatically event to event depending on
the longitudinal position, z, of the event primary vertex.
Additionally, since pairs of particles with �⌘ ⇠ 0 may
be produced near the edge of the detector’s acceptance
as well as in its center, the number of pairs with �⌘ ⇠ 0
is consequently also influenced by fluctuations of the ef-
ficiency and will exhibit an explicit dependency on the
vertex position. One can describe these ”fluctuations”
formally if one assumes that for each value of z, the two-
particle (joint) detection e�ciencies can be factorized.

✏
pair

(⌘1, ⌘2|z) = ✏1(⌘1|z)⇥ ✏1(⌘2|z) (41)

We will further assume that the probability of observing
a collision at a given position z can be described with
some probability density, P

c

(z). The average number of
singles and pairs measured at given values of ⌘1 and ⌘2
are thus also functions of z.

hn1(⌘1)i = K

Z
z

max

z

min

P
c

(z)✏(⌘1|z)hN1(⌘1)idz = hN1(⌘1)if1(⌘1) (42)

hn2(⌘1, ⌘2)i = K

Z
z

max

z

min

P
c

(z)✏(⌘1|z)⇥ ✏(⌘2|z)hN2(⌘1, ⌘2)idz = hN2(⌘1, ⌘2)if2(⌘1, ⌘2)

with

f1(⌘1) = K

Z
z

max

z

min

P
c

(z)✏(⌘1|z)dz (43)

f2(⌘1, ⌘2) = K

Z
z

max

z

min

P
c

(z)✏(⌘1|z)⇥ ✏(⌘2|z)dz

where K is a normalization constant determined by the
lower, z

min

, and upper, z
max

, cuts on the interaction
vertex, z.

K�1 =

Z
z

max

z

min

P
c

(z)dz (44)

The fact that f2(⌘1, ⌘2) cannot be factorized as a product
f1(⌘1)⇥f1(⌘2) implies the correlation function R2(⌘1, ⌘2)
is no longer robust since the e�ciencies are intrinsic func-
tions of the interaction position and therefore do not can-
cel out in the ratio.

R2(⌘1, ⌘2) =
f2(⌘1, ⌘2)

f1(⌘1)f1(⌘2)

hN2(⌘1, ⌘2)i
hN1(⌘1)ihN1(⌘2)i

(45)

The ratio f2/f1f1 may deviate significantly from unity
and consequently biases the correlation function R2.

We illustrate this bias by considering experimental
conditions such that the detection e�ciency is function
of the particle pseudorapidity and the vertex position.

We modify our model of the ⌘ dependence, Eq. 34, such
that the ”edges” ⌘

<

and ⌘
>

are explicit functions of the
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FIG. 8: (Color Online) Model of the vertex position, z depen-
dence of the detection e�ciency used in sec.VII. See text for
description of the model.
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vertex position. One can describe these ”fluctuations”
formally if one assumes that for each value of z, the two-
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The fact that f2(⌘1, ⌘2) cannot be factorized as a product
f1(⌘1)⇥f1(⌘2) implies the correlation function R2(⌘1, ⌘2)
is no longer robust since the e�ciencies are intrinsic func-
tions of the interaction position and therefore do not can-
cel out in the ratio.
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The ratio f2/f1f1 may deviate significantly from unity
and consequently biases the correlation function R2.

We illustrate this bias by considering experimental
conditions such that the detection e�ciency is function
of the particle pseudorapidity and the vertex position.

We modify our model of the ⌘ dependence, Eq. 34, such
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FIG. 8: (Color Online) Model of the vertex position, z depen-
dence of the detection e�ciency used in sec.VII. See text for
description of the model.

vertex position. The number of pairs detected at pseudo
rapidity di↵erence of the order of 2⌘

o

is therefore likely
to fluctuate dramatically event to event depending on
the longitudinal position, z, of the event primary vertex.
Additionally, since pairs of particles with �⌘ ⇠ 0 may
be produced near the edge of the detector’s acceptance
as well as in its center, the number of pairs with �⌘ ⇠ 0
is consequently also influenced by fluctuations of the ef-
ficiency and will exhibit an explicit dependency on the
vertex position. One can describe these ”fluctuations”
formally if one assumes that for each value of z, the two-
particle (joint) detection e�ciencies can be factorized.
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(⌘1, ⌘2|z) = ✏1(⌘1|z)⇥ ✏1(⌘2|z) (41)

We will further assume that the probability of observing
a collision at a given position z can be described with
some probability density, P
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(z). The average number of
singles and pairs measured at given values of ⌘1 and ⌘2
are thus also functions of z.
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The fact that f2(⌘1, ⌘2) cannot be factorized as a product
f1(⌘1)⇥f1(⌘2) implies the correlation function R2(⌘1, ⌘2)
is no longer robust since the e�ciencies are intrinsic func-
tions of the interaction position and therefore do not can-
cel out in the ratio.
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The ratio f2/f1f1 may deviate significantly from unity
and consequently biases the correlation function R2.

We illustrate this bias by considering experimental
conditions such that the detection e�ciency is function
of the particle pseudorapidity and the vertex position.

We modify our model of the ⌘ dependence, Eq. 34, such
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FIG. 8: (Color Online) Model of the vertex position, z depen-
dence of the detection e�ciency used in sec.VII. See text for
description of the model.

vertex position. The number of pairs detected at pseudo
rapidity di↵erence of the order of 2⌘
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is therefore likely
to fluctuate dramatically event to event depending on
the longitudinal position, z, of the event primary vertex.
Additionally, since pairs of particles with �⌘ ⇠ 0 may
be produced near the edge of the detector’s acceptance
as well as in its center, the number of pairs with �⌘ ⇠ 0
is consequently also influenced by fluctuations of the ef-
ficiency and will exhibit an explicit dependency on the
vertex position. One can describe these ”fluctuations”
formally if one assumes that for each value of z, the two-
particle (joint) detection e�ciencies can be factorized.
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We will further assume that the probability of observing
a collision at a given position z can be described with
some probability density, P
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(z). The average number of
singles and pairs measured at given values of ⌘1 and ⌘2
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K�1 =

Z
z

max

z

min

P
c

(z)dz (44)

The fact that f2(⌘1, ⌘2) cannot be factorized as a product
f1(⌘1)⇥f1(⌘2) implies the correlation function R2(⌘1, ⌘2)
is no longer robust since the e�ciencies are intrinsic func-
tions of the interaction position and therefore do not can-
cel out in the ratio.
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The ratio f2/f1f1 may deviate significantly from unity
and consequently biases the correlation function R2.

We illustrate this bias by considering experimental
conditions such that the detection e�ciency is function
of the particle pseudorapidity and the vertex position.

We modify our model of the ⌘ dependence, Eq. 34, such
that the ”edges” ⌘
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and ⌘
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FIG. 8: (Color Online) Model of the vertex position, z depen-
dence of the detection e�ciency used in sec.VII. See text for
description of the model.

vertex position. The number of pairs detected at pseudo
rapidity di↵erence of the order of 2⌘
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is therefore likely
to fluctuate dramatically event to event depending on
the longitudinal position, z, of the event primary vertex.
Additionally, since pairs of particles with �⌘ ⇠ 0 may
be produced near the edge of the detector’s acceptance
as well as in its center, the number of pairs with �⌘ ⇠ 0
is consequently also influenced by fluctuations of the ef-
ficiency and will exhibit an explicit dependency on the
vertex position. One can describe these ”fluctuations”
formally if one assumes that for each value of z, the two-
particle (joint) detection e�ciencies can be factorized.

✏
pair

(⌘1, ⌘2|z) = ✏1(⌘1|z)⇥ ✏1(⌘2|z) (41)

We will further assume that the probability of observing
a collision at a given position z can be described with
some probability density, P

c

(z). The average number of
singles and pairs measured at given values of ⌘1 and ⌘2
are thus also functions of z.

hn1(⌘1)i = K

Z
z

max

z

min

P
c

(z)✏(⌘1|z)hN1(⌘1)idz = hN1(⌘1)if1(⌘1) (42)
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(z)✏(⌘1|z)⇥ ✏(⌘2|z)hN2(⌘1, ⌘2)idz = hN2(⌘1, ⌘2)if2(⌘1, ⌘2)
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P
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(z)✏(⌘1|z)dz (43)

f2(⌘1, ⌘2) = K

Z
z

max
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P
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(z)✏(⌘1|z)⇥ ✏(⌘2|z)dz

where K is a normalization constant determined by the
lower, z

min

, and upper, z
max

, cuts on the interaction
vertex, z.

K�1 =

Z
z

max

z

min

P
c

(z)dz (44)

The fact that f2(⌘1, ⌘2) cannot be factorized as a product
f1(⌘1)⇥f1(⌘2) implies the correlation function R2(⌘1, ⌘2)
is no longer robust since the e�ciencies are intrinsic func-
tions of the interaction position and therefore do not can-
cel out in the ratio.

R2(⌘1, ⌘2) =
f2(⌘1, ⌘2)

f1(⌘1)f1(⌘2)

hN2(⌘1, ⌘2)i
hN1(⌘1)ihN1(⌘2)i

(45)

The ratio f2/f1f1 may deviate significantly from unity
and consequently biases the correlation function R2.

We illustrate this bias by considering experimental
conditions such that the detection e�ciency is function
of the particle pseudorapidity and the vertex position.

We modify our model of the ⌘ dependence, Eq. 34, such
that the ”edges” ⌘

<

and ⌘
>

are explicit functions of the

Neither Methods Robust
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How this works…

37

Method 1 Method 2

Efficiency dependence on “z-vertex”, with gaussian edges, but flat in the fiducial volume.
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Recovery...

• Method 2:
• Carry analysis in fine (narrow) z bins.
• Apply local efficiency factorization.

• Method 1:
• This “recipe” not  strictly valid for method 1

13

primary vertex position.

⌘
<

= �⌘
o

� ↵z (46)

⌘
<

= ⌘
o

� ↵z

The coe�cient ↵ determines how fast the ”edges” ⌘
<

and ⌘
>

shift(walk) with vertex position. We further as-
sume, for illustrative purposes, that the vertex position is
distributed according to a Gaussian distribution, P

c

(z),
centered at z = 0 and of width �

col

.

P
c

=
1p

2⇡�
col

e�z

2
/2�2

col (47)

The function ✏(⌘|z) is shown in Fig. 8 for values ↵ = 0.02,
�
✏

= 0.1 , and �
col

= 20 cm for selected values of the ver-
tex position, z. The pair e�ciency average ✏2 = f2, the
product of average single particle e�ciencies, ✏1✏1 = f1f1,
and the ratio f2/f1f1 are plotted in Fig. 9. One notes
that while the functions f2 and f1f1 are flat over most
of the detector acceptance, they exhibit rapid fall-o↵ be-
havior near the edges of the acceptance. Given the finite

width of the vertex distribution, the two functions feature
di↵erent rates and shapes of roll-o↵ behavior. As illus-
trated in Fig. 9 (c), one finds the ratio f2/f1f1 therefore
deviates significantly from unity towards the edges of the
acceptance in ⌘1, ⌘2 space. This can lead to significant ef-
fects on R2(�⌘). Assuming the correlation function is in
fact equal to unity, i.e. hN2(⌘1, ⌘2)i/hN1(⌘1)ihN1(⌘2)i =
1, averaging the correlation function over ⌘ in the range
�1 < ⌘ < 1 leads to non trivial and significant devia-
tions from unity towards the edges of the acceptance as
well as for values near �⌘ ⇠ 0 as illustrated in Fig. 10.
The magnitude and width of these deviations depend on
the rollo↵ rate of the e�ciency near the edge of the ac-
ceptance, the walk parameter ↵, and the width of the
vertex position distribution, �

col

. The magnitude of the
walk parameter ↵ determines the degree to which the fac-
torization ✏1(⌘1)✏1(⌘2) is violated: the larger the spread,
the less robust the observable R2 becomes, irrespective
of whether Method 1 or 2 are applied to determine it.

The robustness of the R2(⌘1, ⌘2) observable can how-
ever be recovered if one changes the order in which the
average over z and the ratio are taken. This can be ac-
complished by measuring the number of singles and pairs
explicitly as a function of the vertex position z. The
number of pairs and singles have to be binned in z. The
appropriate number of bins must however be determined
experimentally - as discussed below.

R2(⌘1, ⌘2) = K

Z
z

max

z

min

P
c

(z) (48)

⇥ hn2(⌘1, ⌘2|z)i
hn1(⌘1|z)ihn1(⌘2|z)i

dz

The average number of singles and pairs being explicit
functions of z, one can now write

R2(⌘1, ⌘2) = K

Z
z
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z

min

P
c

(z) (49)

⇥ ✏(⌘1|z)⇥ ✏(⌘2|z)hN2(⌘1, ⌘2)i
✏(⌘1|z)⇥ ✏(⌘2|z)hN1(⌘1)ihN1(⌘2)i

dz

provided the z-bins are su�ciently narrow to insure that
the e�ciencies do not appreciably fluctuate throughout
a bin. The e�ciencies thus once again cancel out, and
one obtains the desired result.

R2(⌘1, ⌘2) = K
hN2(⌘1, ⌘2)i

hN1(⌘1)ihN1(⌘2)i

Z
P
c

(z)dz (50)

=
hN2(⌘1, ⌘2)i

hN1(⌘1)ihN1(⌘2)i

The cancellation of e�ciencies achieved with Method
2 is exemplified in Fig. 11 (b) showing ratios of ”mea-
sured” correlation functions R2 by the correct correlation
function (i.e. obtained with ✏ = 1). The red curve cor-
responds to an uncorrected correlation function obtained
within the range |z| < 10 cm whereas the blue curve is
obtained for z bins of 0.25 cm. In the context of our
model, such bins are su�cient to obtain virtually perfect
(i.e. robust) correlation functions. By contrast, Fig. 11
(a) displays ratios for correlation function obtained with
Method 1. Here again, the red curve exemplifies devia-
tion obtained with no correction. The dash curves are
obtained with various specific values of z or z intervals.
All curves deviate from a perfect determination of the
correlation function (solid black line). Method 1 is sim-
ply not robust. With Method 2, the size of the z-bin de-
termines whether cancellation of the e�ciencies properly
take place. If the bins are too coarse, e�ciency correla-
tions persist and the observable is not robust. One finds
that in the context of the model used above, a bin size
of 0.5 cm leads to deviation of order 1 part per mil. Ex-
perimentally, if the the bins are too narrow, one may end
up having too few events in a given bin thereby leading
to numerical fluctuations or even infinities in the calcula-
tion of the ratio hn2(⌘1, ⌘2|z)i/hn1(⌘1|z)ihn1(⌘2|z)i. The
binning likely ends up being a compromise based on the
size of the dataset and the level of precision sought after.

Detector e↵ects can further impact the amplitude and
shape of correlation functions if the e�ciency varies sig-
nificantly through the acceptance and most particularly
if such variations depend on the vertex position. As an

13

primary vertex position.

⌘
<

= �⌘
o

� ↵z (46)

⌘
<

= ⌘
o

� ↵z

The coe�cient ↵ determines how fast the ”edges” ⌘
<

and ⌘
>

shift(walk) with vertex position. We further as-
sume, for illustrative purposes, that the vertex position is
distributed according to a Gaussian distribution, P

c

(z),
centered at z = 0 and of width �

col

.

P
c

=
1p

2⇡�
col

e�z

2
/2�2

col (47)

The function ✏(⌘|z) is shown in Fig. 8 for values ↵ = 0.02,
�
✏

= 0.1 , and �
col

= 20 cm for selected values of the ver-
tex position, z. The pair e�ciency average ✏2 = f2, the
product of average single particle e�ciencies, ✏1✏1 = f1f1,
and the ratio f2/f1f1 are plotted in Fig. 9. One notes
that while the functions f2 and f1f1 are flat over most
of the detector acceptance, they exhibit rapid fall-o↵ be-
havior near the edges of the acceptance. Given the finite

width of the vertex distribution, the two functions feature
di↵erent rates and shapes of roll-o↵ behavior. As illus-
trated in Fig. 9 (c), one finds the ratio f2/f1f1 therefore
deviates significantly from unity towards the edges of the
acceptance in ⌘1, ⌘2 space. This can lead to significant ef-
fects on R2(�⌘). Assuming the correlation function is in
fact equal to unity, i.e. hN2(⌘1, ⌘2)i/hN1(⌘1)ihN1(⌘2)i =
1, averaging the correlation function over ⌘ in the range
�1 < ⌘ < 1 leads to non trivial and significant devia-
tions from unity towards the edges of the acceptance as
well as for values near �⌘ ⇠ 0 as illustrated in Fig. 10.
The magnitude and width of these deviations depend on
the rollo↵ rate of the e�ciency near the edge of the ac-
ceptance, the walk parameter ↵, and the width of the
vertex position distribution, �

col

. The magnitude of the
walk parameter ↵ determines the degree to which the fac-
torization ✏1(⌘1)✏1(⌘2) is violated: the larger the spread,
the less robust the observable R2 becomes, irrespective
of whether Method 1 or 2 are applied to determine it.

The robustness of the R2(⌘1, ⌘2) observable can how-
ever be recovered if one changes the order in which the
average over z and the ratio are taken. This can be ac-
complished by measuring the number of singles and pairs
explicitly as a function of the vertex position z. The
number of pairs and singles have to be binned in z. The
appropriate number of bins must however be determined
experimentally - as discussed below.

R2(⌘1, ⌘2) = K

Z
z

max

z

min

P
c

(z) (48)

⇥ hn2(⌘1, ⌘2|z)i
hn1(⌘1|z)ihn1(⌘2|z)i

dz

The average number of singles and pairs being explicit
functions of z, one can now write

R2(⌘1, ⌘2) = K

Z
z

max

z

min

P
c

(z) (49)

⇥ ✏(⌘1|z)⇥ ✏(⌘2|z)hN2(⌘1, ⌘2)i
✏(⌘1|z)⇥ ✏(⌘2|z)hN1(⌘1)ihN1(⌘2)i

dz

provided the z-bins are su�ciently narrow to insure that
the e�ciencies do not appreciably fluctuate throughout
a bin. The e�ciencies thus once again cancel out, and
one obtains the desired result.

R2(⌘1, ⌘2) = K
hN2(⌘1, ⌘2)i

hN1(⌘1)ihN1(⌘2)i

Z
P
c

(z)dz (50)

=
hN2(⌘1, ⌘2)i

hN1(⌘1)ihN1(⌘2)i

The cancellation of e�ciencies achieved with Method
2 is exemplified in Fig. 11 (b) showing ratios of ”mea-
sured” correlation functions R2 by the correct correlation
function (i.e. obtained with ✏ = 1). The red curve cor-
responds to an uncorrected correlation function obtained
within the range |z| < 10 cm whereas the blue curve is
obtained for z bins of 0.25 cm. In the context of our
model, such bins are su�cient to obtain virtually perfect
(i.e. robust) correlation functions. By contrast, Fig. 11
(a) displays ratios for correlation function obtained with
Method 1. Here again, the red curve exemplifies devia-
tion obtained with no correction. The dash curves are
obtained with various specific values of z or z intervals.
All curves deviate from a perfect determination of the
correlation function (solid black line). Method 1 is sim-
ply not robust. With Method 2, the size of the z-bin de-
termines whether cancellation of the e�ciencies properly
take place. If the bins are too coarse, e�ciency correla-
tions persist and the observable is not robust. One finds
that in the context of the model used above, a bin size
of 0.5 cm leads to deviation of order 1 part per mil. Ex-
perimentally, if the the bins are too narrow, one may end
up having too few events in a given bin thereby leading
to numerical fluctuations or even infinities in the calcula-
tion of the ratio hn2(⌘1, ⌘2|z)i/hn1(⌘1|z)ihn1(⌘2|z)i. The
binning likely ends up being a compromise based on the
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nificantly through the acceptance and most particularly
if such variations depend on the vertex position. As an
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Method 1 and 2 

Method 1 Method 2

w/o z binningw/o z binning

w/ z binning w/ z binning

Efficiency dependence on “z-vertex”, with gaussian edges, but quadratic dependence 
on eta  in the fiducial volume.

Both methods fail if efficiency is dependent on “z”.
Approximate recovery with fine z-bins using Method 1
Complete recovery with fine z-bins using Method 2

39
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What about momentum dependence and pair losses

• Technique: 
• Discretize the densities in pT also

• Use eta, phi, pT dependent weights proportional to inverse of efficiencies.

40

• Example from ALICE detector

• Determined from HIJING events propagated through detector 
simulation with GEANT and detector response simulator
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Part II: Conclusions

• Method 2 Robust 
• unless efficiency has dependence on z-vertex 

• but recovery possible for analysis in narrow z-bins

• Method 1 Only Approximately Robust 
• Robustness lost if singles, correlation, or efficiency are function of avg-eta

• Approximate Robustness lost if dependence on z-vertex 

• “Partial” recovery possible for analysis in narrow z-bins

•Bigger Point:
•With differential correlations, it is possible to identify detector features 

more readily than with integral correlations. 

•Integral correlations average over detector issues, they DO NOT 
eliminate them.
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Part III: The Identity Method - Revisited/Extended

42

C.A.P, arXiv:1706.01333
• Context: 

• Identity Method developed by Marek Gazdzicki to study fluctuations of the multiplicity of particle 
species w/o loss of statistics and in cases where the PID signals (dE/dx, TOF, or mass) 
associated with different species might overlap significantly and lead to considerable ambiguities. 

• Method developed first for PID problems involving two species (A Method to study chemical 
equilibration in nucleus-nucleus collisions), Eur. Phys. J. C8 (1999) 131. 

• Extended to “n” species by M. Gorenstein (Identity Method for Particle Number Fluctuations and 
Correlations) Phys. Rev. C84 (2011) 024902. 

• Extended to “n” species and arbitrary orders by A. Rustamov and M. Gorenstein (Identity 
Method for Moments of Multiplicity Distribution) Phys. Rev. C86 (2012) 044906. 

• BUT: Method outlined in these papers does not explicitly account for particle losses. 

• C.A.P,  arXiv:1706.01333
• Identity method extended to account for particle losses.

• This presentation:
• Extending identity method to differential correlation functions.
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• Goal: Measure moments of e-by-e yield fluctuations of different species 

• where N1, N2: number of particles of types “1” and “2” measured e-by-e, 

• Species  identified with some PID detector that produces a signal E with 
distributions that are nominally distinct for different species but some overlap.  

• Tracks may be lost because of detector or algorithm artifacts. The detection 
efficiency       is species dependent - and momentum dependent.

PID Disambiguation ….

43

νdyn =
N1(N1 −1)

N1
2 +

N2 (N2 −1)
N2

2 −
N1N2

N1 N2

ε i

counts

E

1

2

Average over Large event ensemble

3

π ±

K ±
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• Probability of producing multiplicities N1,N2,…Nk of all 
species is denoted by  PT(N1,N2,…Nk) 

• Probability of measuring multiplicities n1,n2,…nk of all species 
is denoted by  PM(n1,n2,…nk) 

• Moments are calculated according to 

Moments of produced/measured multiplicities

44

Np ≡ PT (N1,N2,…,NK )Np
N1,N2 ,…,NK

∞

∑

Np
2 ≡ PT (N1,N2,…,NK )Np

2

N1,N2 ,…,NK

∞

∑

NpNq ≡ PT (N1,N2,…,NK )NpNq
N1,N2 ,…,NK

∞

∑

np ≡ PM (n1,n2,…,nK )np
n1,n2 ,…,nK

∞

∑

np
2 ≡ PM (n1,n2,…,nK )np

2

n1,n2 ,…,nK

∞

∑

npnq ≡ PM (n1,n2,…,nK )npnq
n1,n2 ,…,nK

∞

∑

and similarly for higher moments … 
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• Particle Loss Model: 

• Calculations yields:

Moments of measured multiplicities (2)

45

2

The variables N1 and N2 represent the multiplicity of produced particles of species of type 1 and 2, measured event-42

by-event, within the fiducial volume ⌦ of the experiment. One is interested in measuring moments of Np and Nq,43

where p, q = 1, . . . , k are labels to identify k di↵erent particle species (e.g., 1 =pion, 2 =kaon, 3 =proton), observed44

and counted event-by-event. These moments are determined by the joint probability of the k particle species, which45

we denote PT (N1, N2, . . . , Nk):46
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Evidently, not all produced particles are properly counted given there are instrumental losses. We label the multiplicity50

of detected particles using lower case letters, np.The instrumental losses of particles are modeled with independent51

binomial distributions, B(np|Np, "p), p = 1, . . . , k, which we write52

B(np|Np, "p) =
Np!

np!(Np � np)!
"np (1� "p)

Np�np , (3)53

where "p represent the detection e�ciency of particle species p. In general, the e�ciencies "p di↵er for species54

p = 1, . . . , k. The joint probability PM (n1, n2, . . . , nk) of the number of observed particles is obtained by summing over55

all multiplicities the product of the joint probability of produced multiplicities PT (N1, N2, . . . , Nk) by the probabilities56

of observing the multiplicities np given the produced multiplicities Np.57
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The moments of the observed multiplicities are then calculated similarly as those of the produced multiplicities and59

one gets60
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It is then straightforward to verify (see for instance Ref. [1]) that the moments of the observed multiplicities are64

related to those of the produced multiplicities according to65

hnpi = "phNpi66
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p i (6)67

hnpnqi = "p"qhNpNqi.68

and the measured factorial moments hnp (np � 1)i are69

hnp (np � 1)i = "2phNp (Np � 1)i. (7)70

The observable ⌫dyn is thus considered robust because e�ciencies for species 1 and 2 cancel out of each of the three71

terms of Eq. 1.72
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related to those of the produced multiplicities according to65

hnpi = "phNpi66

hn2
pi = "p (1� "p) hNpi+ "2phN2

p i (6)67

hnpnqi = "p"qhNpNqi.68

and the measured factorial moments hnp (np � 1)i are69

hnp (np � 1)i = "2phNp (Np � 1)i. (7)70

The observable ⌫dyn is thus considered robust because e�ciencies for species 1 and 2 cancel out of each of the three71

terms of Eq. 1.72

Factorial Moments are well behaved

R2 =
np np −1( )

np
2 =

Np Np −1( )
Np

2 Robust Ratio (R2)

2

The variables N1 and N2 represent the multiplicity of produced particles of species of type 1 and 2, measured event-42

by-event, within the fiducial volume ⌦ of the experiment. One is interested in measuring moments of Np and Nq,43

where p, q = 1, . . . , k are labels to identify k di↵erent particle species (e.g., 1 =pion, 2 =kaon, 3 =proton), observed44

and counted event-by-event. These moments are determined by the joint probability of the k particle species, which45

we denote PT (N1, N2, . . . , Nk):46

hNpi ⌘
1X

Np=0

PT (N1, . . . , Np, . . . , Nk)Np,47

hN2
p i ⌘

1X

Np=0

PT (N1, . . . , Np, . . . , Nk)N
2
p , (2)48

hNpNqi ⌘
1X

Np=0

PT (N1, . . . , Np, . . . , Nq, . . . , Nk)NpNq.49

Evidently, not all produced particles are properly counted given there are instrumental losses. We label the multiplicity50

of detected particles using lower case letters, np.The instrumental losses of particles are modeled with independent51

binomial distributions, B(np|Np, "p), p = 1, . . . , k, which we write52

B(np|Np, "p) =
Np!

np!(Np � np)!
"np (1� "p)

Np�np , (3)53

where "p represent the detection e�ciency of particle species p. In general, the e�ciencies "p di↵er for species54

p = 1, . . . , k. The joint probability PM (n1, n2, . . . , nk) of the number of observed particles is obtained by summing over55

all multiplicities the product of the joint probability of produced multiplicities PT (N1, N2, . . . , Nk) by the probabilities56

of observing the multiplicities np given the produced multiplicities Np.57

PM (n1, n2, . . . , nk) =
1X

N1=0

1X

N2=0

· · ·
1X

Nk=0

PT (N1, N2, . . . , Nk)B(n1|N1, "1)B(n2|N2, "2)⇥ · · ·⇥B(nk|Nk, "k). (4)58

The moments of the observed multiplicities are then calculated similarly as those of the produced multiplicities and59

one gets60

hnpi ⌘
1X

np=0

PM (n1, . . . , np, . . . , nk)np,61

hn2
pi ⌘

1X

np=0

PM (n1, . . . , np, . . . , nk)n
2
p, (5)62

hnpnqi ⌘
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np=0

PM (n1 . . . , np, . . . , nq, . . . , nk)npnq.63

It is then straightforward to verify (see for instance Ref. [1]) that the moments of the observed multiplicities are64

related to those of the produced multiplicities according to65

hnpi = "phNpi66

hn2
pi = "p (1� "p) hNpi+ "2phN2

p i (6)67

hnpnqi = "p"qhNpNqi.68

and the measured factorial moments hnp (np � 1)i are69

hnp (np � 1)i = "2phNp (Np � 1)i. (7)70

The observable ⌫dyn is thus considered robust because e�ciencies for species 1 and 2 cancel out of each of the three71

terms of Eq. 1.72

Nu-dyn is ROBUSTνdyn
(measured ) = νdyn

(true)

However: Must discretize measurement to correct for efficiency momentum 
dependence (weight technique)
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• Counting probabilities rather than integer instances  
• Assume one knows the probability of observing 

signal E given species “p”:  Pp(E) 
• Define the Line Shape (Density): 

• Normalization: 

• Probability of signal being due to species “p” given 
PID signal E.

E

1

2

E dE/dx of a specific particle

ρ2 (E)

ρ1(E)

Identity Method: PID weight

46

In the absence of overlap 
(unambiguous PID): ω p (E) = 0 or 1

In most cases 
(ambiguous PID): 

0 ≤ω p (E) ≤1

ρp (E) = np Pp (E)

ρ(E) = ρp (E)
p=1

K

∑ = np Pp (E)
p=1

K

∑

P(p | E) =
ρp (E)
ρ(E)

≡ω p (E)

For each particle and 
each candidate species

ρ(E)
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• Definition: Identity Variable (particle and event): 

• In the absence of overlap (unambiguous PID): 

• w/ ambiguous PID: 

Identity Variable

47

Wp = ω p (Ei )
i=1

n

∑

W1 = n1
W2 = n2
!

n1 particles of type 1  
 

n2 particles of type 2

0 ≤Wp ≤ n

n = n1 + n2 + nK

For each of the K candidate species: sum 
weights of all n particles of an event.
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Identity Variables Moments

48

Calculation of 1st, 2nd, and covariances of the identity variables 

1st Moments: 

2nd Moments: 

Covariances:

Wp = 1
Nevents

Wp
(i )

i=1

Nevents

∑

These moments are  linear combinations of moments of the 
measured multiplicities — proportional to moments of the 
produced multiplicities.

Wp
2 = 1

Nevents

Wp
(i )( )2

i=1

Nevents

∑

WpWq = 1
Nevents

Wp
(i )Wq

(i )

i=1

Nevents

∑
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Identity Method w/o Losses (1)
• One finds:

49

Wp = PT (n1,n2 )up1
n2=0

∞

∑ + PT (n1,n2 )up2
n2=0

∞

∑
n1=0

∞

∑
i2=1

n2

∑
n1=0

∞

∑
i1=1

n1

∑

= PT (n1,n2 )n1up1
n2=0

∞

∑
n1=0

∞

∑ + PT (n1,n2 )n2u2
n2=0

∞

∑
n1=0

∞

∑
= up1 n1 + up2 n2

W1 = u11 n1 + u12 n2
W2 = u21 n1 + u22 n2

Linear Equations

W1

W2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

u11 u12
u21 u22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n1
n2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

u11 u12
u21 u22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1
W1

W2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

n1
n2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Matrix Form

Matrix Inversion

Example for two species
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Identity Method with Efficiency Losses (2)

50

Wp
2 = upj

2 ε j N j
j=1

2

∑ + upj( )2 ε j2 N j (N j −1)
j=1

2

∑ +2up1up2ε1ε2 N1N2

Trick is to absorb the efficiency and define N’ quantities

One can then write

WpWq = upqjε j N j
j=1

2

∑ + upjuqjε j
2 N j (N j −1)

j=1

2

∑ + up1uq2 +uq1up2( )ε1ε2 N1N2

Wp
2 = upj

2 N ' j
j=1

2

∑ + upj( )2 N j (N j −1)'
j=1

2

∑ +2up1up2 N '1N '2

WpWq = upqj N ' j
j=1

2

∑ + upjuqj N j (N j −1)'
j=1

2

∑ + up1uq2 +uq1up2( ) N '1N '26

similarly as in Ref. [4], we first define two “b” coe�cients164

bp = hW 2
p i �

kX

j=1

u2
pjhN 0

ji, (23)165

bpq = hWpWqi �
kX

j=1

upqjhN 0
ji, (24)166

and four sets of “a” coe�cients167

aij = (uij)
2 , 1  i, j, k; (25)168

apqi = 2uipuiq, 1  p < q  k, i = 1, . . . , k; (26)169

aipq = upiuqi, 1  p < q  k, i = 1, . . . , k; (27)170

aijpq = upiuqj + upjuqi, 1  p < q  k, 1  i < jk. (28)171

Introducing the k + k(k � 1)/2-vectors N and B defined as172

N =

0

BBBBBBBB@

hN1(N1 � 1)0i
...

hNk(Nk � 1)0i⌦
N1

0N2
0↵

...⌦
Nk�1

0Nk
0↵

1

CCCCCCCCA

, B =

0

BBBBBBBB@

b1
...
bk
b12
...

b(k�1)k

1

CCCCCCCCA

(29)173

and the (k + k(k � 1)/2)⇥ (k + k(k � 1)/2) matrix A as174

A =

0

BBBBBBBBB@

a11 · · · ak1 a121 · · · a(k�1)k
1

...
. . .

...
...

. . .
...

a1k · · · akk a12k · · · a(k�1)k
k

a112 · · · ak12 a1212 · · · a(k�1)k
12

...
. . .

...
...

. . .
...

ak12 · · · ak(k�1)k a12(k�1)k · · · a(k�1)k
(k�1)k

1

CCCCCCCCCA

. (30)175

Eqs. (21,22) may then be written AN = B, which is solved by inversion of A:176

N = A�1B. (31)177

However, while this expression is of the same form as that obtained in Ref. [4], the definitions of both N and B are178

quite di↵erent. The procedure outlined in this work is thus distinct than that of Ref. [4]. Two remarks are in order.179

First, since the calculation of bp and bpq requires knowledge of hN 0
ji, one must first solve Eq. (13) before attempting180

the solution of Eq. (31). Second, once the moments hNp(Np � 1)0i and hN 0
pN

0
qi are obtained from Eq. (31), it is then181

unnecessary to correct them for e�ciencies towards the determination ⌫dyn using182

⌫dyn =
hN1 (N1 � 1)0i

hN 0
1i2

+
hN2 (N2 � 1)0i

hN 0
2i2

� 2
hN 0

1N
0
2i

hN 0
1ihN 0

2i
. (32)183

IV. SUMMARY184

We discussed the impact of finite particle losses associated with instrumental e↵ects in measurements of moments185

of produced multiplicities with the Identity Method towards the evaluation of fluctuation measures such as ⌫dyn.186

We found that the identity method remains viable in spite of particle losses provided the coe�cients bp and bpq are187

adjusted as per Eq. (23) and the calculation of the moments hN2
q i is replaced by that of hNq(Nq�1)0i as per Eq. (20).188

The treatment of particle losses discussed in this work can and should be applied to measurements of higher moments189

discussed in Ref. [3].190
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the solution of Eq. (31). Second, once the moments hNp(Np � 1)0i and hN 0
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IV. SUMMARY184

We discussed the impact of finite particle losses associated with instrumental e↵ects in measurements of moments185

of produced multiplicities with the Identity Method towards the evaluation of fluctuation measures such as ⌫dyn.186
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adjusted as per Eq. (23) and the calculation of the moments hN2
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Wp = PT (N1,N2 ) up1ε1N1 +up2ε2N2
⎡⎣ ⎤⎦

N2=0

∞
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∑ = up1ε1 N1 +up2ε2 N2
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We discussed the impact of finite particle losses associated with instrumental e↵ects in measurements of moments185

of produced multiplicities with the Identity Method towards the evaluation of fluctuation measures such as ⌫dyn.186

We found that the identity method remains viable in spite of particle losses provided the coe�cients bp and bpq are187

adjusted as per Eq. (23) and the calculation of the moments hN2
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The treatment of particle losses discussed in this work can and should be applied to measurements of higher moments189
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Eqs. (21,22) may then be written AN = B, which is solved by inversion of A:176

N = A�1B. (31)177

However, while this expression is of the same form as that obtained in Ref. [4], the definitions of both N and B are178

quite di↵erent. The procedure outlined in this work is thus distinct than that of Ref. [4]. Two remarks are in order.179

First, since the calculation of bp and bpq requires knowledge of hN 0
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IV. SUMMARY184

We discussed the impact of finite particle losses associated with instrumental e↵ects in measurements of moments185

of produced multiplicities with the Identity Method towards the evaluation of fluctuation measures such as ⌫dyn.186

We found that the identity method remains viable in spite of particle losses provided the coe�cients bp and bpq are187

adjusted as per Eq. (23) and the calculation of the moments hN2
q i is replaced by that of hNq(Nq�1)0i as per Eq. (20).188

The treatment of particle losses discussed in this work can and should be applied to measurements of higher moments189

discussed in Ref. [3].190
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• Discretize momentum space (single particle level) 
• Rapidity: 
• Azimuth: 
• Transverse Momentum: 

• Single Particle Density: 
• Pair Density: 

Differential Correlations (Discretization)

51

−η0 ≤η ≤η0 α = 1,…,mα

0 ≤φ ≤ 2π β = 1,…,mβ

p⊥ ,min ≤ p⊥ ≤ p⊥ ,max γ = 1,…,mγ

ρ1
( p)(η,φ, p⊥ ) ρ̂1

( p)(α ,β,γ )
ρ2
( pq)(η1,φ1, p⊥ ,1,η2,φ2, p⊥ ,2 ) ρ̂2

( pq)(α1,β1,γ 1,α 2,β2,γ 2 )

ρ̂1
( p)(α ,β,γ ) =

1
Nevents

N1,(i )
( p) (α ,β,γ )

ε1
( p)(α ,β,γ )i=1

Nevents

∑
ΔηΔφΔp⊥

ρ̂2
( pq)(α1,β1,γ 1,α 2,β2,γ 2 ) =

1
Nevents

N1,(i )
( p) (α1,β1,γ 1)

ε1
( p)(α1,β1,γ 1)

N1,(i )
(q) (α 2,β2,γ 2 )

ε1
(q)(α 2,β2,γ 2 )i=1

Nevents

∑
Δη2Δφ 2Δp⊥

2
use N(N-1) is all indices 
are equal.

Detection Efficiency for Species (p)
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Marginalization (integrating pT)

• Integrals replaced by sums…

52

ρ̂1
( p)(α ,β ) = ρ̂1

( p)(α ,β,γ )
γ =1

Nγ

∑

ρ̂2
( pq)(α1,β1,α 2,β2 ) = ρ̂2

( pq)(α1,β1,γ 1,α 2,β2,γ 2 )
γ 1,γ 2=1

mγ

∑ = ρ̂2
( pq)(α1,β1,γ 1,α 2,β2,γ 1)

γ 1=1

mγ

∑ + ρ̂2
( pq)(α1,β1,γ 1,α 2,β2,γ 2 )

γ 1≠γ 2=1

mγ

∑

R2
( pq)(Δα ,Δβ ) =

ρ̂2
( pq)(α1,β1,α 2,β2 )δ Δα −α1 +α 2( )δ Δβ − β1 + β2( )

β1,β2

mβ

∑
α1,α2

mα

∑

ρ̂1
( p)(α1,β1)ρ̂1

q (α 2,β2 )δ Δα −α1 +α 2( )δ Δβ − β1 + β2( )
β1,β2

mβ

∑
α1,α2

mα

∑
−1
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Differential Identity Method w/ Losses
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Wp α ,β,γ( ) = upj α ,β,γ( )ε1( j ) α ,β,γ( ) N1( j ) α ,β,γ( )
j=1

K

∑
Moments of the identity variables in differential bins

Wp α ,β,γ( )2 = upj
(2) α ,β,γ( )ε1( j ) α ,β,γ( ) N1( j ) α ,β,γ( )

j=1

K

∑

+ upj α ,β,γ( )ε1( j ) α ,β,γ( )⎡⎣ ⎤⎦
2
N1
( j ) α ,β,γ( ) N1

( j ) α ,β,γ( )−1⎡⎣ ⎤⎦
j=1

K

∑

+ upj α ,β,γ( )ε1( j ) α ,β,γ( )upj ' α ,β,γ( )ε1( j ') α ,β,γ( ) N1( j ') α ,β,γ( )
j≠ j '=1

K

∑

Wp α1,β1,γ 1( )Wq α 2,β2,γ 2( ) = upqj α ,β,γ( )ε1( j ) α ,β,γ( ) N1( j ) α ,β,γ( )
j=1

K

∑

+ upj α ,β,γ( )ε1( j ) α ,β,γ( )upj α ,β,γ( )ε1( j ) α ,β,γ( ) N1( j ) α ,β,γ( ) N1
( j ) α ,β,γ( )−1⎡⎣ ⎤⎦

j=1

K

∑

+ upj α ,β,γ( )ε1( j ) α ,β,γ( )upj ' α ,β,γ( )ε1( j ') α ,β,γ( ) N1( j ') α ,β,γ( )
j≠ j '=1

K

∑

N = A−1BMatrix Inversion provides differential moments:
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Part III: Summary

• The Identity method extended to account for 
rapidity, azimuth, and pT dependent detection 
efficiency… 
• for fluctuation measurements 
• for differential correlation measurements 
• flow measurements (not discussed here).
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Summary

• Observing anomalies in the BES of fluctuations is rather challenging. 
• I argued to 

• diversify observables used in the search 
• include differential observables and their basic characteristics 

(amplitude, width) with system size, beam energy, etc. 
• I showed that differential correlations can be measured robustly — even 

when the efficiency is a complicated function of momentum or detector 
conditions.. 

• I extended the identity method  
• to account for particle losses — that vary across the acceptance. 
• to differential correlation measurements 

• maximize use of the accumulated statistics 
• extend pT range of differential correlation measurements 
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The Multiple Facets of Correlation Functions
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And much more …
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A shameless plug…
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