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2+1 Polyakov-loop NJL model

PNJL: WF, Yu-xin Liu, Yue-liang Wu, PRD 81 (2010) 014028 
Lattice: M. Cheng et al., PRD 79 (2009) 074505
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Quark Number Fluctuations

PNJL: WF, Yu-xin Liu, Yue-liang Wu, PRD 81 (2010) 014028 
Lattice: M. Cheng et al., PRD 79 (2009) 074505



Fluctuations of Electric Charge and Correlations 

PNJL: WF, Yu-xin Liu, Yue-liang Wu, PRD 81 (2010) 014028 
Lattice: M. Cheng et al., PRD 79 (2009) 074505



Fluctuations on the Phase Diagram

WF, Yue-liang Wu, PRD 82 (2010) 074013
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By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by

m2
q,k = h2

s,k�
2
0,k ,

m2
⇡,k = m2

S,k ,

m2
�,k = m2

S,k +�4,k�
2
0,k ,

m2
⇢,k = m2

V,k + g3,k�
2
0,k ,

m2
a1,k = m2

V,k + (g2,k + g3,k)�2
0,k .

(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
1
2

Tr
hÄ
� (2)k [�] + R�k
ä�1
· @tR

�
k

i
� ��k
��i
· @t�i ,

(14)

where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)

@t�k =
1
2

� � +
1
2

FRG see talks by Jan, Defu
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We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
1
2

Tr
hÄ
� (2)k [�] + R�k
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· @tR

�
k

i
� ��k
��i
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where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)
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By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
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phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
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from UV to IR degrees of freedom. To achieve this, we
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effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
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fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
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phase which is characterized by �0,k = 0. When chiral sym-
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is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.
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masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
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of the momentum dependence of the full meson propagators
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hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
1
2

Tr
hÄ
� (2)k [�] + R�k
ä�1
· @tR

�
k

i
� ��k
��i
· @t�i ,

(14)

where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)

@t�k =
1
2

� � +
1
2

FRG see talks by Jan, Defu



Quantum Fluctuations beyond MFA

Summary on MFA 

• Easy to calculate 

• Agree with lattice 
results only 
qualitatively 

• Overestimate the 
phase transition 
strength in the MFA 

• Thus, one has to go 
beyond the MFA

4

By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by
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2
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(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
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ä�1
· @tR

�
k

i
� ��k
��i
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where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as
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Thermodynamics of the effective model within FRG
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Baryon number fluctuations
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Freeze-out line
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Correlating the skewness and kurtosis of 
baryon number distributions
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Comparison with experimental measurements

WF, J.M. Pawlowski, PRD 93 (2016) 091501(R)
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Silver Blaze Property and the Frequency Dependence
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Two-loop Results
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By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by

m2
q,k = h2

s,k�
2
0,k ,

m2
⇡,k = m2

S,k ,

m2
�,k = m2

S,k +�4,k�
2
0,k ,

m2
⇢,k = m2

V,k + g3,k�
2
0,k ,

m2
a1,k = m2

V,k + (g2,k + g3,k)�2
0,k .

(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
1
2

Tr
hÄ
� (2)k [�] + R�k
ä�1
· @tR

�
k

i
� ��k
��i
· @t�i ,

(14)

where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)

@t�k =
1
2

� � +
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2
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By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by
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(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:
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where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as
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By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by

m2
q,k = h2

s,k�
2
0,k ,

m2
⇡,k = m2

S,k ,

m2
�,k = m2

S,k +�4,k�
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V,k + g3,k�
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0,k ,

m2
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V,k + (g2,k + g3,k)�2
0,k .

(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:
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where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)
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Flow Equations
Wetterich equation:
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QCD Phase Transition with T

Order parameter Meson and quark 
mass

WF, J.M. Pawlowski, F. Rennecke, in preparation
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Running of the Strong Coupling

WF, J.M. Pawlowski, F. Rennecke, in preparation
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Yukawa coupling and Masses

Meson and quark masses WF, J.M. Pawlowski, F. Rennecke, in preparation
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Summary and outlook
★ Baryon number fluctuations and other conserved charge 

fluctuations have been investigated in the effective models 
with MFA, beyond MFA with quantum fluctuations included 
through the FRG approach.  

★ Better agreement with lattice simulations and experiments is 
observed when more quantum fluctuations are included. 

★We have also performed FRG QCD calculations at finite 
temperature. The QCD phase transitions have been 
investigated.  

★ Thermodynamics and fluctuations of conserved charges 
calculated in the FRG QCD approach are in progress.
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