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Overview

● Introduction
– Future Circular Collider with focus on FCC-hh (pp) option
– Physics motivation & Reference Detector Layout

● FCC-hh & Radiation Studies
● Tracker design & expected tracker performance

– Reference tracker geometry & design driving principles 
– Granularity in R-Φ & tracking resolution
– Implications of high pile-up & high-rate environment

→ Pattern recognition capabilities & requirements on granularity in Z
→ Primary vertexing in high pile-up & requirements on timing information
→ Expected tracker occupancy & data rates

● Summary & Challenges
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Future Circular Collider

● FCC machine:

– FCC-hh (pp collider): final goal defining the whole infrastructure
→ ~ 16T magnets → 100TeV pp collider in 97.75km tunnel

– FCC-ee: as a potential first step   
– FCC-eh: as an option



Z.Drasal, RD50 meeting in Krakow (7th June 2017) 4

Future Circular Collider

● FCC machine:

– FCC-hh (pp collider): final goal defining the whole infrastructure
→ ~ 16T magnets → 100TeV pp collider in 97.75km tunnel

– FCC-ee: as a potential first step   
– FCC-eh: as an option

● A&G 2 high-luminosity exp.
● L&B 2 other exp.
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Key FCC-hh parameters

Parameter FCC-hh HE-LHC (HL) LHC
Collision cms energy [TeV] 100 27 14

Dipole field [T] 16 16 8.33

Circumference [km] 97.75 26.7 26.7

# IP 2 main & 2 2 & 2 2 & 2

Beam current [A] 0.5 1.12 (1.12) 0.58

Bunch intensity  [1011] 1 1 (0.2) 2.2 (0.44) (2.2) 1.15

Bunch spacing  [ns] 25 25 (5) 25 (5) 25

beta* [m] 1.1 0.3 0.25 (0.20) 0.55

Luminosity/IP [1034 cm-2s-1] 5 30 25 (5) 1

# Events/bunch crossing 170 <1020 (204) ~800 (160) (135) 27

Stored energy/beam [GJ] 8.4 1.3 (0.7) 0.36

Synchrotron rad. [W/m/ap.] 28.4 4.6 (0.33) 0.17

● Baseline (phase 1): 10 yrs of operation @ L
peak

 = 5x1034cm-2s-1    → 2.5 ab-1 per detector

● Ultimate (phase 2): 15 yrs of operation @ L
peak

 ≤ 30x1034cm-2s-1 → 15 ab-1 per detector

→ Total: O(20)ab-1 per experiment
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Understanding FCC-hh parameters

Parameter FCC-hh HE-LHC (HL) LHC
Collision cms energy [TeV] 100 27 14

Dipole field [T] 16 16 8.33

Circumference [km] 97.75 26.7 26.7

# IP 2 main & 2 2 & 2 2 & 2

Beam current [A] 0.5 1.12 (1.12) 0.58

Bunch intensity  [1011] 1 1 (0.2) 2.2 (0.44) (2.2) 1.15

Bunch spacing  [ns] 25 25 (5) 25 (5) 25

beta* [m] 1.1 0.3 0.25 (0.20) 0.55

Luminosity/IP [1034 cm-2s-1] 5 30 25 (5) 1

# Events/bunch crossing 170 <1020 (204) ~800 (160) (135) 27

Stored energy/beam [GJ] 8.4 1.3 (0.7) 0.36

Synchrotron rad. [W/m/ap.] 28.4 4.6 (0.33) 0.17

14TeV → 100 TeV

σ
inelastic

: 80mb → 108mb

average p
T
: 0.6 → 0.8 GeV/c

multiplicity
charged/unit η

: 5.4 → 8

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
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Understanding FCC-hh parameters

Parameter FCC-hh HE-LHC (HL) LHC
Collision cms energy [TeV] 100 27 14

Dipole field [T] 16 16 8.33

Circumference [km] 97.75 26.7 26.7

# IP 2 main & 2 2 & 2 2 & 2

Beam current [A] 0.5 1.12 (1.12) 0.58

Bunch intensity  [1011] 1 1 (0.2) 2.2 (0.44) (2.2) 1.15

Bunch spacing  [ns] 25 25 (5) 25 (5) 25

beta* [m] 1.1 0.3 0.25 (0.20) 0.55

Luminosity/IP [1034 cm-2s-1] 5 30 25 (5) 1

# Events/bunch crossing 170 <1020 (204) ~800 (160) (135) 27

Stored energy/beam [GJ] 8.4 1.3 (0.7) 0.36

Synchrotron rad. [W/m/ap.] 28.4 4.6 (0.33) 0.17

14TeV → 100 TeV

σ
inelastic

: 80mb → 108mb

average p
T
: 0.6 → 0.8 GeV/c

multiplicity
charged/unit η

: 5.4 → 8

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but …

→ pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns)          
     operation scheme as an option  

5x increase in pile-up
wrt HL-LHC 
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Understanding FCC-hh parameters

Parameter FCC-hh HE-LHC (HL) LHC
Collision cms energy [TeV] 100 27 14

Dipole field [T] 16 16 8.33

Circumference [km] 97.75 26.7 26.7

# IP 2 main & 2 2 & 2 2 & 2

Beam current [A] 0.5 1.12 (1.12) 0.58

Bunch intensity  [1011] 1 1 (0.2) 2.2 (0.44) (2.2) 1.15

Bunch spacing  [ns] 25 25 (5) 25 (5) 25

beta* [m] 1.1 0.3 0.25 (0.20) 0.55

Luminosity/IP [1034 cm-2s-1] 5 30 25 (5) 1

# Events/bunch crossing 170 <1020 (204) ~800 (160) (135) 27

Stored energy/beam [GJ] 8.4 1.3 (0.7) 0.36

Synchrotron rad. [W/m/ap.] 28.4 4.6 (0.33) 0.17

14TeV → 100 TeV

σ
inelastic

: 80mb → 108mb

average p
T
: 0.6 → 0.8 GeV/c

multiplicity
charged/unit η

: 5.4 → 8

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but …

→ pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns)          
     operation scheme as an option  

→ FCC-hh represents an extremely high luminosity machine → expecting huge particle/data 
     rates & significantly higher rad. level in the inner/fwd detector  

6x increase in luminosity
 

wrt HL-LHC
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Physics Requirements on Detector Design

● Design strongly depends on outcome of future LHC discoveries: 

– In case of new discoveries → precise understanding of new physics will motivate the design

– In case no new physics is discovered → mass scale of new physics may be beyond LHC reach  
or final states are too elusive → higher mass reach, high luminosity machine & precise det. are 
the key!
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Physics Requirements on Detector Design

● Design strongly depends on outcome of future LHC discoveries: 

– In case of new discoveries → precise understanding of new physics will motivate the design

– In case no new physics is discovered → mass scale of new physics may be beyond LHC reach 
or final states are too elusive → higher mass reach, high luminosity machine & precise det. are 
the key!
→ either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)
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Physics Requirements on Detector Design

● Design strongly depends on outcome of future LHC discoveries: 

– In case of new discoveries → precise understanding of new physics will motivate the design

– In case no new physics is discovered → mass scale of new physics may be beyond LHC reach 
or final states are too elusive → higher mass reach, high luminosity machine & precise det. are 
the key!
→ either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)

● The key benchmarks: Higgs & EWSB phenomena → FCC opens us a new kinematic & 
dynamical regime

– e.g. WH → 4l

→ Need extended tracking & ECAL coverage up-to |η|~4 (c.f. |η|~2.5 for LHC exp.)   

WH → 4l



Z.Drasal, RD50 meeting in Krakow (7th June 2017) 12

Physics Requirements on Detector Design

– e.g. VBF

→ Need for efficient VBF jet measurement up-to |η|~6
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Physics Requirements on Detector Design

– e.g. VBF

→ Need for efficient VBF jet measurement up-to |η|~6

● FCC immensely increases the mass reach ~ E/14TeV (by factor of 5-7 increase, depending on L
integr.

)

–  e.g. Z' → μμ or Z' → tt
→ Need for high p

T
 resolution ~10-20% @ 10TeV (cf. LHC: 10% @1TeV), but keep sensitivity to 

     low p
T
 tracks

→ High Tracker, E/HCAL granularity essential to resolve jet-substructure (E/HCAL), reject bkg,... 

Expected highly-collimated final states – boosted decay products
(min distance between 2 partons ~ m/p

T
 )

Z'
SSM

 → tt



Z.Drasal, RD50 meeting in Krakow (7th June 2017) 14

Reference Detector Layout

η = 2.5

η = 4.0

η = 2.0

η = 3.0

Be beam-pipe @R=20+0.8mm
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Reference Detector Layout

η = 2.5

η = 4.0

η = 2.0

η = 3.0

Be beam-pipe @R=20+0.8mm

Central region inspired 
by ATLAS/CMS



Z.Drasal, RD50 meeting in Krakow (7th June 2017) 16

Reference Detector Layout

η = 4.0

η = 3.0

Be beam-pipe @R=20+0.8mm

Central region inspired 
by ATLAS/CMS

Forward region inspired 
by LHCb

η = 2.0

η = 2.5
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Reference Detector Layout

4T solenoid (10m free bore)  + 2x 4T Fwd solenoids (no shielding)
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Reference Detector Layout

4T solenoid (10m free bore)  + 2x 4T Fwd solenoids (no shielding) 

Courtesy M.Mentink

Stray field
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Reference Detector Layout

Shielding

Muon system

4T solenoid (10m free bore)  + 2x 4T Fwd solenoids (no shielding)

(i)Fwd + Central Tracker

Fwd iFwd Central

Hadr. Calorimeter Fwd (Pb/LAr), BRL(Fe/Sci)
Electromag. Calorimeter (Pb/LAr)
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FCC-hh & Radiation Rates?

● Neutron fluence rates @L=30x1034 cm-2s-1

→ 2 main hot spots: FWD calorimeter & TAS

Courtesy of M.I.Besana
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FCC-hh & Radiation Rates?

● Neutron fluence rates @L=30x1034 cm-2s-1

→ 2 main hot spots: FWD calorimeter & TAS

→ Shielding scheme effective, but...

Courtesy of M.I.Besana

1m steel
5cm Li polyethylene
1cm lead

Cast iron shielding

Shielding FwdCAL: 
5cm Li polyethylene
between 2mm Al
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FCC-hh & Radiation Rates?

● Neutron fluence rates @L=30x1034 cm-2s-1

→ 2 main hot spots: FWD calorimeter & TAS

→ Shielding scheme effective, but...

→ Several leakage channels appear
     due to service channels etc.

Courtesy of M.I.Besana

1m steel
5cm Li polyethylene
1cm lead

Cast iron shielding

Shielding FwdCAL: 
5cm Li polyethylene
between 2mm Al
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Radiation Rates in Tracker

● Charged particle fluence rates @L=30x1034 cm-2s-1 Courtesy of M.I.Besana

● Layer structure
● ECal effect

E-cap ECal effect Effect of shielding in muon chamber

Closer to the FwdCAL hotspot
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Tracker & Long-term Damage after 30ab-1

● 1 MeV neq fluence after 30ab-1

Long-term damage for Tracker after 30ab-1

Courtesy of M.I.Besana

Radiation @ FCC:
@R=25mm: ~6x1017 neq cm-2 ,TID~0.4GGy
● LHC  = 1
● HL-LHC → 20x LHC
● FCC → 600x LHC
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Tracker & Long-term Damage after 30ab-1

● 1 MeV neq fluence after 30ab-1

Long-term damage for Tracker after 30ab-1

Courtesy of M.I.Besana

HL-LHC rad. tolerance limit @R~270mm for z=0m
(z-pos. dependent) 

@R=25mm: ~6x1017 neq cm-2 ,TID~0.4GGy
● LHC  = 1
● HL-LHC → 20x LHC
● FCC → 600x LHC

Radiation @ FCC:
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Tracker Layout & Design Driving Principles

● Key tracker parameters:

– Granularity in R-Φ → driven by requirement on dp
T
/p

T
 res. & occupancy limit (~1%)

~ 20% @ 10TeV/c

L: 1.55m
B: 4T
σ

R-Φ
: 10(7.5)um 

N
layers

: 12  
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Tracker Layout & Design Driving Principles

● Key tracker parameters:

– Granularity in R-Φ → driven by requirement on dp
T
/p

T
 res. & occupancy limit (~1%)

– Number of layers N → driven by dp
T
/p

T
 res. & pattern recognition capabilities

Note: res. improves as 1/√N
layers

, but material budget (MB) increases as N
layers

 

L: 1.55m
B: 4T
σ

R-Φ
: 10(7.5)um 

N
layers

: 12  

~ 20% @ 10TeV/c

Low MB
Important!
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δz
0
 [um]

Tracker Layout & Design Driving Principles

● Key tracker parameters:

– Granularity in R-Φ → driven by requirement on dp
T
/p

T
 res. & occupancy limit (~1%)

– Number of layers N → driven by dp
T
/p

T
 res. & pattern recognition capabilities

Note: res. improves as 1/√N
layers

, but material budget (MB) increases as N
layers

 

– Granularity in Z → driven by pattern recognition capabilities, occupancy limit & primary vertexing in 
given pile-up O(1000)

~ 20% @ 10TeV/c

Low MB
Important!

2-nd layer

Z

R

Beam spot

1-st layer

σ
z

σ
z

......

BP
Beam-pipe 

limiting factor! 

0.0 0.5 1.0 1.5 2.0

100

200

400

500

2.5 η

300

L: 1.55m
B: 4T
σ

R-Φ
: 10(7.5)um 

N
layers

: 12  
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Reference Tracker Layout (v3.03)

ECAL
Shielding

Macro-pixels

Striplets

Pixels

Pixel R➚0.9 m
due to occupancy

4 (seed) BRL layers

Surface:     ~430m2 

#Channels: 489.4M
                     9964.4M     
                     5460.9M     

Pixels             : 25x50um2 (1-4th BRL layers, EC R1),
                        100/3x100um2 (R2), 
                        100/3x400um2 (R3,R4)
Macro-pixels: 100/3x400um2

Strips            : 100/3umx50mm (BRL), 
                        100/3umx10mm (EC)
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Reference Tracker Layout (v3.03)

ECAL
Shielding

Macro-pixels

Striplets

Pixels

Pixel R➚0.9 m
due to occupancy

4 (seed) BRL layers

Surface:     ~430m2 

#Channels: 489.4M
                     9964.4M     
                     5460.9M     

Pixels             : 25x50um2 (1-4th BRL layers, EC R1),
                        100/3x100um2 (R2), 
                        100/3x400um2 (R3,R4)
Macro-pixels: 100/3x400um2

Strips            : 100/3umx50mm (BRL), 
                        100/3umx10mm (EC)

Huge increase in #pixel channels wrt LHC 
experiments due to requirements on tracking up to η=6 
& resilience to high rad. levels generated by FCC-hh! 

~dimensions of CMS tracker
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Material Budget & Tracking Resolution

● A simplified model for MB assumed:
– x/x0 ~1-2.5% per layer (services accumul. effect)

(20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

→ technology input needed for more real. estimate

2.5%

2.0%

1.0%

1.5%

BPBRL

EC

x/
x 0 Material budget Tracker rad. length map
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Material Budget & Tracking Resolution

● A simplified model for MB assumed:
– x/x0 ~1-2.5% per layer (services accumul. effect)

(20% Si, 42% C, 2% Cu, 6% Al, 30% Plastic)

→ technology input needed for more real. estimate

● Tracking resolution:

2.5%

2.0%

1.0%

1.5%

BPBRL

EC

x/
x 0 Material budget Tracker rad. length map

~20% @10TeV/c Start losing lever-arm 

ECAL

p
T
 = 1 GeV/c 

p
T
 = 5 GeV/c

p
T
 = 10 GeV/c 

p
T
 = 100 GeV/c

p
T
 = 1 TeV/c

p
T
 = 10 TeV/c
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Pattern recognition (PR) Capabilities

● Granularity in Z strongly affects pattern recognition capabilities, so how to study PR 
analytically? Strategy: study “weak” spots in layout!

 → Assume perfect seeding (triplet) → propagate σ
rΦ

, σ
z 
to ith layer

 → Calculate probability p to mis-match a real hit anywhere 
      on the track  with a bkg hit @95% CL in PU=1000
     

y

x

@ 95% conf. level

n.σ
z

n.σ
rΦ

n≃2.45
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Pattern recognition (PR) Capabilities

● Granularity in Z strongly affects pattern recognition capabilities, so how to study PR 
analytically? Strategy: study “weak” spots in layout!

 → Assume perfect seeding (triplet) → propagate σ
rΦ

, σ
z 
to ith layer

 → Calculate probability p to mis-match a real hit anywhere 
      on the track  with a bkg hit @95% CL in PU=1000
     

● How to “qualitatively” interpret p ?
c.f. CMS Ph2 layout @PU~140... 

→ To keep similar PR for FCChh @PU~1000, set bkg. prob. contamination p @20%

CMS trk layout: 3.6.5

 (1-p) versus η

tkLayout
PU=140

(1-p) ~ 80%

E
.B

ro
n

d
o

lin
:

C
M

S
 D

P
-2017/0 10

http://cds.cern.ch/record/2260931/files/DP2017_010.pdf
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Understanding Track Propagator in Pattern 
Recognition

● 4 key parameters affecting propagation of error ellipse:

→ Multiple scattering & material effect @ ϑ (tilt angle α)

→ Propagation distance 
→ Projection factor on det. plane
→ Detector resolution

y

x

n.σ
z

n.σ
rΦ
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Understanding Track Propagator in Pattern 
Recognition

● 4 key parameters affecting propagation of error ellipse:

→ Multiple scattering & material effect @ ϑ (tilt angle α)

→ Propagation distance 
→ Projection factor on det. plane
→ Detector resolution

Propagated σ
R-Φ

 on 4th BRL layer

1GeV/c: Dominant material effect
~ 1/sin(ϑ)

Propagated σ
Z
 on 4th BRL layer

Dominant material 
& projection effect 

~ 1/sin3(ϑ)

α=0

α=0

y

x

n.σ
z

n.σ
rΦ
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Understanding Track Propagator in Pattern 
Recognition

● 4 key parameters affecting propagation of error ellipse:

→ Multiple scattering & material effect @ ϑ (tilt angle α)

→ Propagation distance 
→ Projection factor on det. plane
→ Detector resolution

● To min. mat. effects, tracker in tilted layout advantageous! 

Propagated σ
R-Φ

 on 4th BRL layer

Propagated σ
Z
 on 4th BRL layer

Tilted: α~π/2-ϑ

Tilted: α~π/2-ϑ

y

x

n.σ
z

n.σ
rΦ

Compensated by tilt angle

Compensated by tilt angle
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Tilted Geometry: Design Proposal v4.01

● Tilted layout of outer tracker driven by 
requirement to achieve ~0.2 bkg. contam. 
level (BCL) in PR:
→ uppermost layer designed non-tilted
     to keep the highest possible lever-arm
→ modules positioned to hermetically cover
     full luminous region ±75mm
→ ECs strips res. in Z needed to be set 
     to ~500um (~1mm OK) 

● Tilted layout of inner tracker driven by ~0.2 
BCL in PR & highest achievable z0 res.
(to deal with primary vertexing @PU~1000):

    → tilt angle of 1st layer: ϑ
tilt

 ≃ 10∘ optimized
         to achieve a compromise between low MB 
         & higher radial position

Inner

Outer
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Tilted Layout & Pattern Recognition

(1-p) ~ 80%

Tilted layout v4.01: in→out approach

→ With tilted layout the bkg. contam. level @~20% achievable in PU~1000 for p
T
=1GeV/c (limit 

     value driven by HL-LHC scenario with PU~140 & CMS Phase 2 upgrade tracker layout)

→ Limits: Mat. budget assumed per module → NOT fully realistic tilted design → need to consider     
     realistic engineering with services, cooling & support structure (technology input necessary)!

(1-p) ~ 0%

Non-tilted layout v3.03: in→out approach

(1-p) ~ 10%
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Tilted Layout: Improvement in Tracking 
Performance

Tilted layout

Non-tilted layout Non-tilted layout

δd0

Non-tilted layout

Tilted layout

δz0 [um] versus η δd0 [um] versus η

1st layer tilt @η≃2.2

p
T
 = 1 GeV/c 

p
T
 = 5 GeV/c

p
T
 = 10 GeV/c 

p
T
 = 100 GeV/c

p
T
 = 1 TeV/c

p
T
 = 10 TeV/c

Similar dp
T
/p

T
 res. for 

both tilted & non-tilted
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Tilted Layout: Improvement in Tracking 
Performance

Tilted layout

Non-tilted layout Non-tilted layout

δd0

Non-tilted layout

Tilted layout

δz0 [um] versus η δd0 [um] versus η

→ For tilted layout, the dominant effect for 1GeV/c curve shape is beam-pipe material!

p
T
 = 1 GeV/c 

p
T
 = 5 GeV/c

p
T
 = 10 GeV/c 

p
T
 = 100 GeV/c

p
T
 = 1 TeV/c

p
T
 = 10 TeV/c

Similar dp
T
/p

T
 res. for 

both tilted & non-tilted

δz
0
 [um]

0.0 0.5 1.0 1.5 2.0

100

200

400

500

2.5 η

MS by beam-pipe

300
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Vertexing @ PU=1000 & Timing Information

● How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?

→ Dependent on scenario for luminous region (Gauss, “rectangular”,...) → simulate 1000 PU vertices     
      according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

● Gauss. bunch:                                Line PU: 

                                                             Time PU: 

∂μ/∂z distr.

Piwinsky angle Φ ~ 0.67
Time Piw. angle Ψ ~ 0.40

http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.111001
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Vertexing @ PU=1000 & Timing Information

● How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?

→ Dependent on scenario for luminous region (Gauss, “rectangular”,...) → simulate 1000 PU vertices     
      according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

● Gauss. bunch:                                Line PU: 

                                                             Time PU: 

→ Study what fraction of tracks may be unambiguously 
     assigned to the primary vertex @ 95% CL? Use 2D info 
    (PV assumed to be “precisely” found from e.g. high p

T
 tracks)

∂μ/∂z distr.

2-nd layer

Z

R

Beam spot

1-st layer

σ
z

σ
z

......

δz
0
 & δt

0
 play the crucial role!

BP

Piwinsky angle Φ ~ 0.67
Time Piw. angle Ψ ~ 0.40

http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.111001
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Vertexing @ PU=1000 & Timing Information

HL-LHC scenario @ PU=140
CMS Ph2 Upgr. tracker

→ Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

90%
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Vertexing @ PU=1000 & Timing Information

HL-LHC scenario @ PU=140
CMS Ph2 Upgr. tracker

FCC-hh scenario @ PU=1000
Tilted layout

→ Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

→ @PU~1000 avg. distance between vertices (Φ~0.67) ~110um @z=0m, hence the error due to mult.   
     scattering in beam-pipe is for η>1.5 already larger than the avg. vertex distance → timing essential

→ With current FCC-hh scheme & need for eta coverage up-to 6 the primary vertexing @ PU~1000   
     seems very difficult for η>4.0, even with timing res. ~5ps  (several time measur. per track) 

90% 90%
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Occupancy & Expected Data Rates @ PU=1000

● Have a look at the tracker granularity in a view of hit occupancy (~ <1%), what data rates 
may we expect at PU~1000?

→ Use Fluka simulated charged particles fluence per pp collision [cm-2] scaled by 1000 PUs
→ Calculate occupancy & hit rates for 2 scenarios:

● Non-triggered data @ f = 40MHz
● Triggered data @ f ~ 1MHz (given ~ by hardware limits, e.g. FPGA)
● Assume binary read-out (spars. read-out scheme)

 

ECAL

FwdiFwd

CTRL TRK

Charged particles fluence [cm-2] per 1 pp collision



Z.Drasal, RD50 meeting in Krakow (7th June 2017) 47

Inner: Occupancy & Expected Data Rates

Challenge: 6.3 Gb/s/cm2

→ Layer data rate (40MHz)
→ Layer data rate (1MHz, trigger)

→ Data rate per cm2 (40MHz)
→ Data rate per cm2 (1MHz, trigger)

Challenge: 1.6 Gb/s/cm2

Extreme data flows >>10Gb/s/module
(even triggered @ 1MHz)

→ Hit occupancy [%] (~ <1%)
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Outer & Fwd: Occupancy & Data Rates

Outer:

iFWD:

 FWD:

→ Expected huge tracker data rates: 766 TB/s (untriggered), 19 TB/s (triggered @ 1MHz)
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Summary & Challenges

● The key tracker parameters have been studied & optimized:

→ Current layout: ~430m2 (391m2 in tilted layout) of Si with #channels: 5461M (pixels), 9964M                   
     (macro-pixels), 489M (strips)

→ The granularity in R-Φ driven mostly by dp
T
/p

T
 @p

T
=10TeV/c → achieved dp

T
/p

T
 ~20%

→ The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:

● Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex 
detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions  
→ realistic engineering (technology input) with services, cooling & support structure important!

● Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only 
with precise timing information σ

t
~10ps (2D vertexing) → the limiting factor for high η coverage is

beam-pipe material

→ Expected data rates (766 TB/s untriggered, 19 TB/s triggered @1MHz) implicate need for new 
     read-out technologies (high speed, low power optical links) & dedicated trigger design!

→ Expected 1MeV neq fluence ~6x1017cm-2 & TID ~0.4GGy @ R=25mm represent new challenges     
     for the tracker (vertex detector) technologies
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● The key tracker parameters have been studied & optimized:

→ Current layout: ~430m2 (391m2 in tilted layout) of Si with #channels: 5461M (pixels), 9964M                   
     (macro-pixels), 489M (strips)

→ The granularity in R-Φ driven mostly by dp
T
/p

T
 @p

T
=10TeV/c → achieved dp

T
/p

T
 ~20%

→ The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:

● Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex 
detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions  
→ realistic engineering (technology input) with services, cooling & support structure important!

● Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only 
with precise timing information σ

t
~10ps (2D vertexing) → the limiting factor for high η coverage is

beam-pipe material

→ Expected data rates (766 TB/s untriggered, 19 TB/s triggered @1MHz) implicate need for new 
     read-out technologies (high speed, low power optical links) & dedicated trigger design!

→ Expected 1MeV neq fluence ~6x1017cm-2 & TID ~0.4GGy @ R=25mm represent new challenges     
     for the tracker (vertex detector) technologies

→ Dedicated R&D is a key to success! 
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