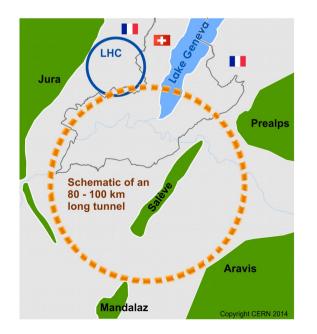

Status & Challenges of Tracker Design for FCC-hh

Zbyněk Drásal CERN

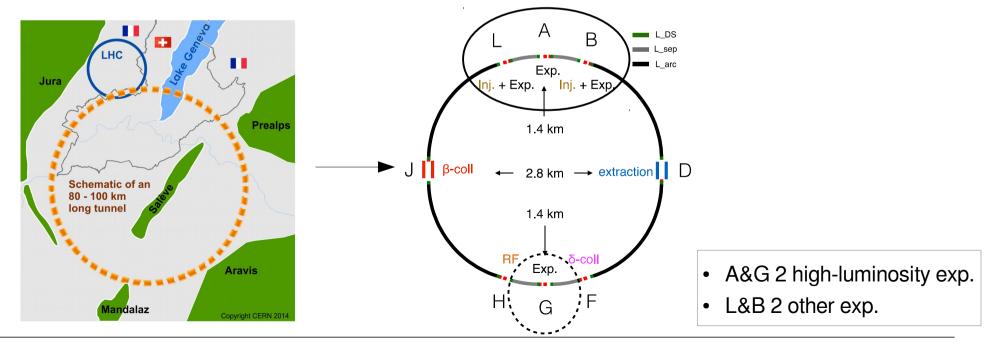
On behalf of the FCC-hh detector working group

Overview


- Introduction
 - Future Circular Collider with focus on FCC-hh (pp) option
 - Physics motivation & Reference Detector Layout
- FCC-hh & Radiation Studies
- Tracker design & expected tracker performance
 - Reference tracker geometry & design driving principles
 - Granularity in R- Φ & tracking resolution
 - Implications of high pile-up & high-rate environment
 - → Pattern recognition capabilities & requirements on granularity in Z
 - Primary vertexing in high pile-up & requirements on timing information
 - -> Expected tracker occupancy & data rates
- Summary & Challenges

Future Circular Collider

• FCC machine:


- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~ 16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as a potential first step
- FCC-eh: as an option

Future Circular Collider

• FCC machine:

- FCC-hh (pp collider): final goal defining the whole infrastructure
 - → ~ 16T magnets → 100TeV pp collider in 97.75km tunnel
- FCC-ee: as a potential first step
- FCC-eh: as an option

Z.Drasal, RD50 meeting in Krakow (7th June 2017)

Key FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

- **Baseline** (phase 1): 10 yrs of operation @ $L_{peak} = 5x10^{34} \text{cm}^{-2}\text{s}^{-1} \rightarrow 2.5 \text{ ab}^{-1}$ per detector
- Ultimate (phase 2): 15 yrs of operation @ L_{peak} ≤ 30x10³⁴cm⁻²s⁻¹ → 15 ab⁻¹ per detector
 - → Total: O(20)ab⁻¹ per experiment

Understanding FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

 $\begin{cases} 14\text{TeV} \rightarrow 100 \text{ TeV} \\ \sigma_{\text{inelastic}} : 80\text{mb} \rightarrow 108\text{mb} \\ \text{average } p_{\text{T}} : 0.6 \rightarrow 0.8 \text{ GeV/c} \\ \text{multiplicity}_{\text{charged/unit } \eta} : 5.4 \rightarrow 8 \end{cases}$

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...

Understanding FCC-hh parameters

Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17

14TeV → 100 TeV

$$\sigma_{\text{inelastic}}$$
: 80mb → 108mb
average p_T: 0.6 → 0.8 GeV/c
multiplicity_{charged/unit η}: 5.4 → 8

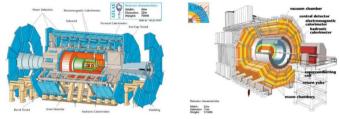
5x increase in pile-up wrt HL-LHC

→ the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...

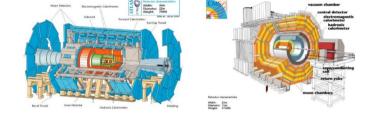
→ pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option

Understanding FCC-hh parameters

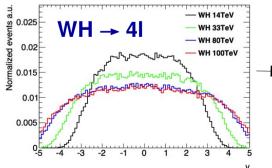
Parameter	FCC-hh		HE-LHC	(HL) LHC
Collision cms energy [TeV]	100		27	14
Dipole field [T]	16		16	8.33
Circumference [km]	97.75		26.7	26.7
# IP	2 main & 2		2 & 2	2 & 2
Beam current [A]	0.5		1.12	(1.12) 0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25
beta* [m]	1.1	0.3	0.25	(0.20) 0.55
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
# Events/bunch crossing	170	<1020 (204)	~800 (160)	(135) 27
Stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
Synchrotron rad. [W/m/ap.]	28.4		4.6	(0.33) 0.17


c 14TeV → 100 TeV $\sigma_{\text{inelastic}}$: 80mb → 108mb average p_T: 0.6 → 0.8 GeV/c Multiplicity_{charged/unit η}: 5.4 → 8

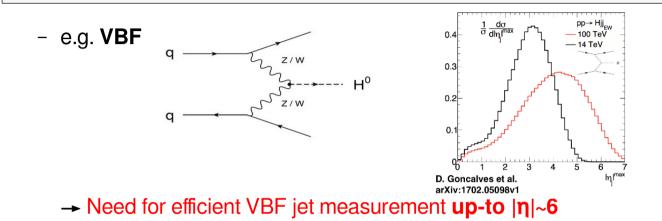
6x increase in luminosity wrt HL-LHC


- → the minimum bias events @FCC are quite similar to ones @HL-LHC, but ...
- → pile-up per bunch crossing O(1000) is a big challenge → keeping 5ns (versus 25ns) operation scheme as an option
- → FCC-hh represents an extremely high luminosity machine → expecting huge particle/data rates & significantly higher rad. level in the inner/fwd detector

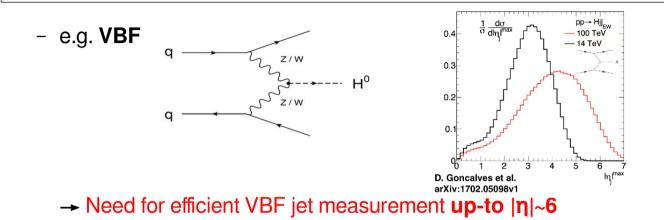
- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach or final states are too elusive → higher mass reach, high luminosity machine & precise det. are the key!


- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach or final states are too elusive → higher mass reach, high luminosity machine & precise det. are the key!
 - → either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)

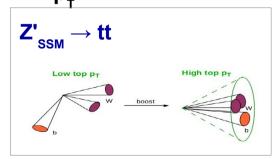
- Design strongly depends on outcome of future LHC discoveries:
 - In case of new discoveries precise understanding of new physics will motivate the design
 - In case no new physics is discovered → mass scale of new physics may be beyond LHC reach or final states are too elusive → higher mass reach, high luminosity machine & precise det. are the key!
 - → either way a very general purpose detector is a way to go (similarly as ATLAS or CMS)



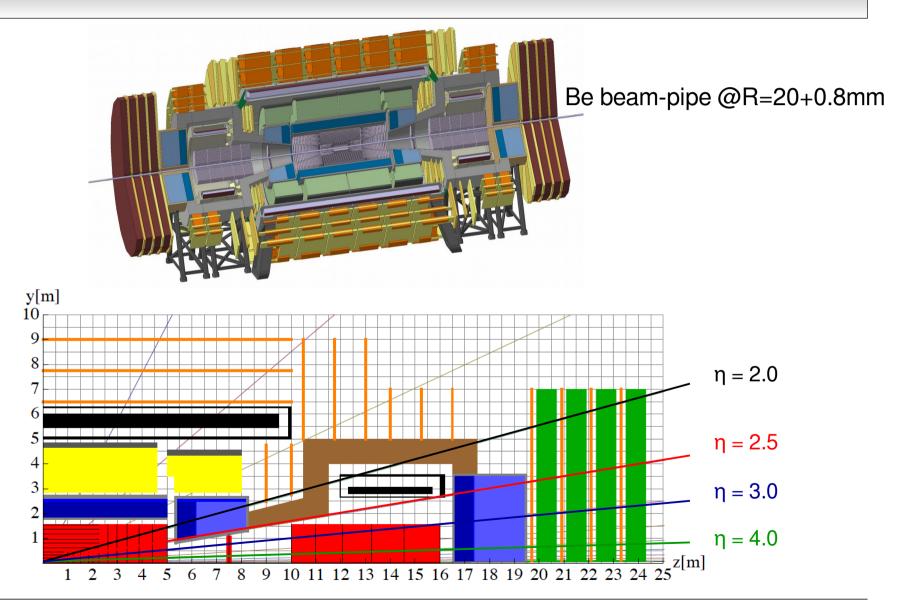
- The key benchmarks: Higgs & EWSB phenomena → FCC opens us a new kinematic & dynamical regime
 - e.g. WH → 4I

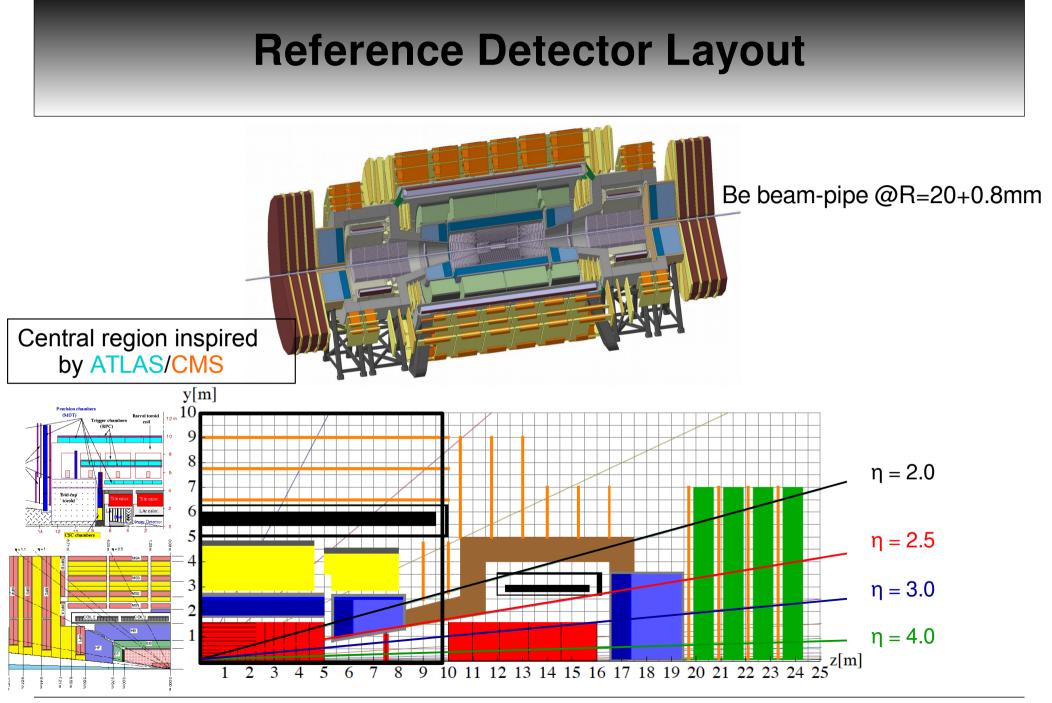


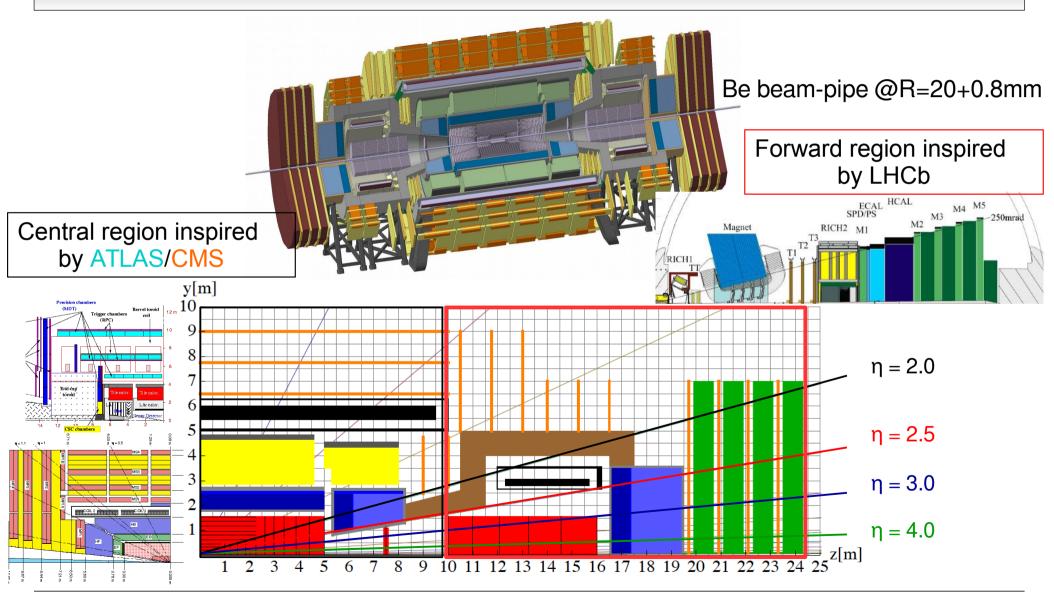
	14 TeV		100 TeV	
	2.5	4	2.5	4
ggF	0.74	0.99	0.56	0.88
WH	0.66	0.97	0.45	0.77
ZH	0.69	0.98	0.48	0.8
ttH	0.84	1	0.56	0.9
VBF	0.75	0.98	0.55	0.87


- Need extended tracking & ECAL coverage up-to $|\eta| \sim 4$ (c.f. $|\eta| \sim 2.5$ for LHC exp.)

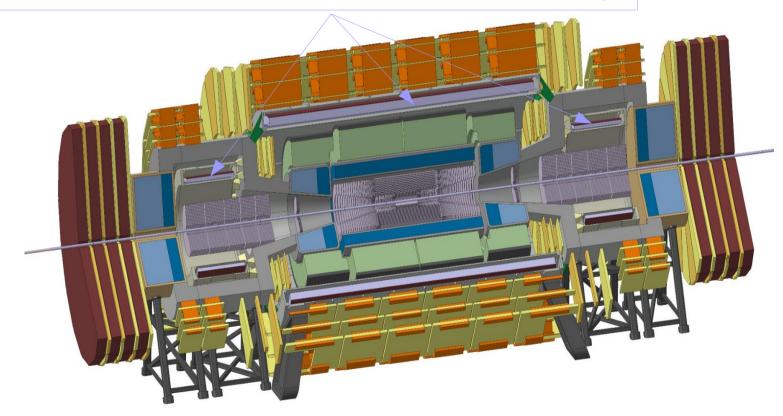
Z.Drasal, RD50 meeting in Krakow (7th June 2017)

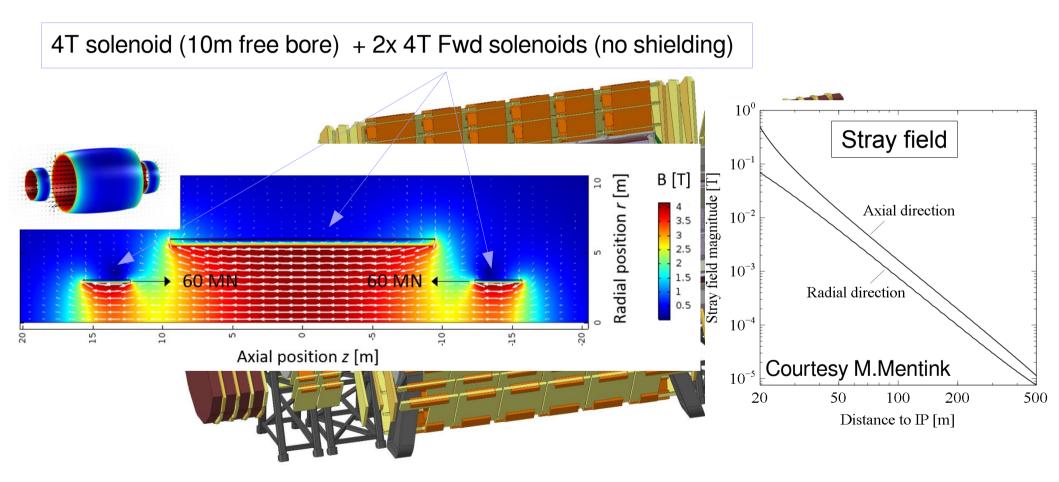


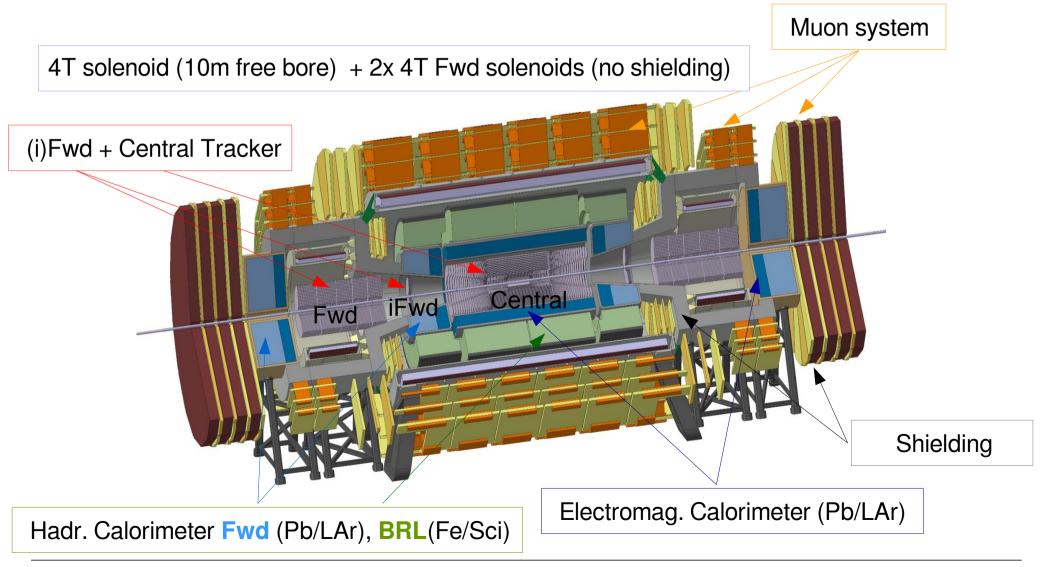

- FCC immensely increases the mass reach ~ E/14TeV (by factor of 5-7 increase, depending on L_{integr})
 - e.g. $Z' \rightarrow \mu\mu$ or $Z' \rightarrow tt$
 - → Need for high p_T resolution ~10-20% @ 10TeV (cf. LHC: 10% @1TeV), but keep sensitivity to low p_T tracks



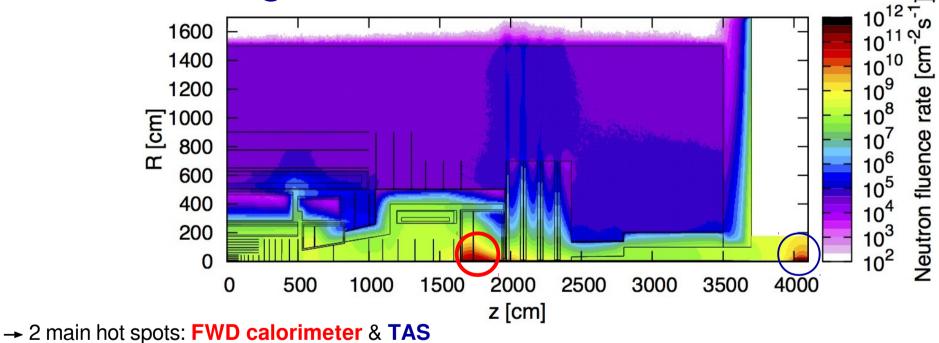
Expected highly-collimated final states – boosted decay products (min distance between 2 partons $\sim m/p_{_{\rm T}}$)


→ High Tracker, E/HCAL granularity essential to resolve jet-substructure (E/HCAL), reject bkg,...

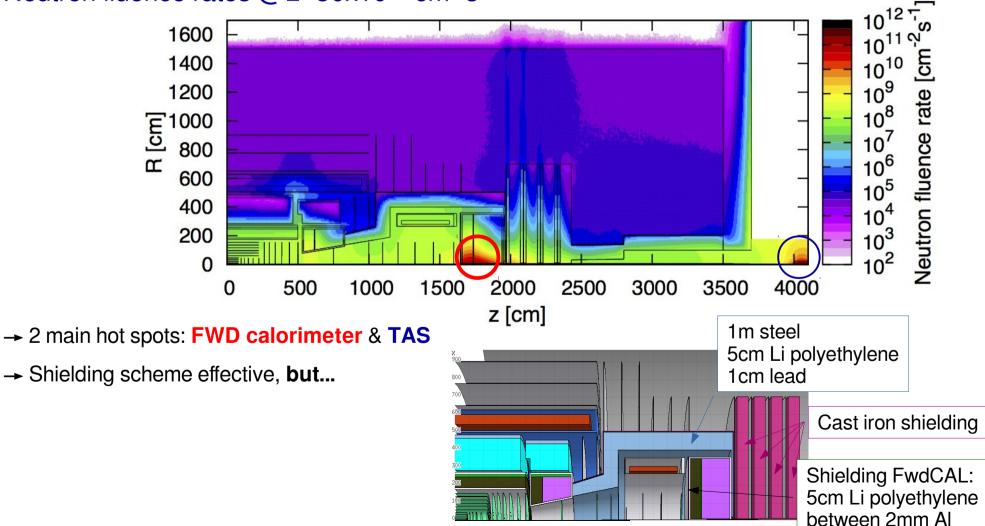




4T solenoid (10m free bore) + 2x 4T Fwd solenoids (no shielding)

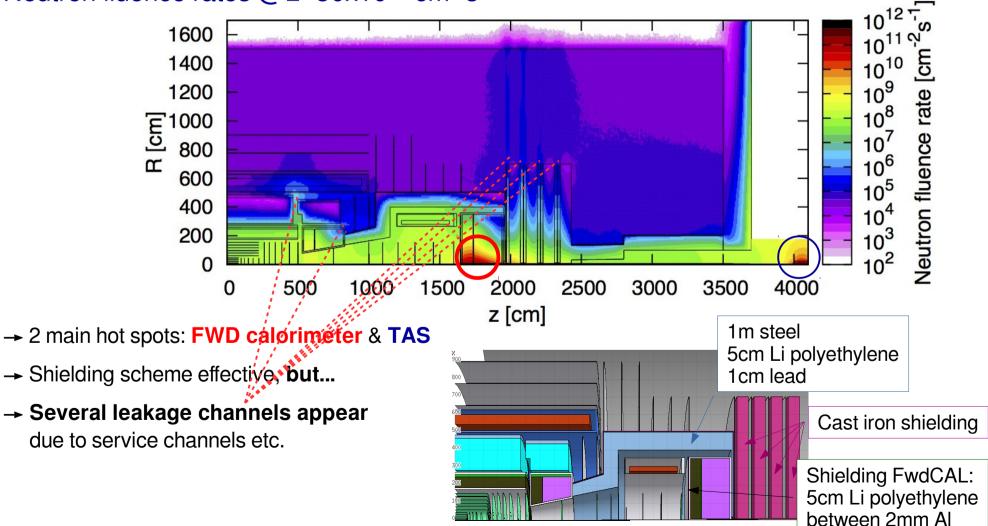


FCC-hh & Radiation Rates?

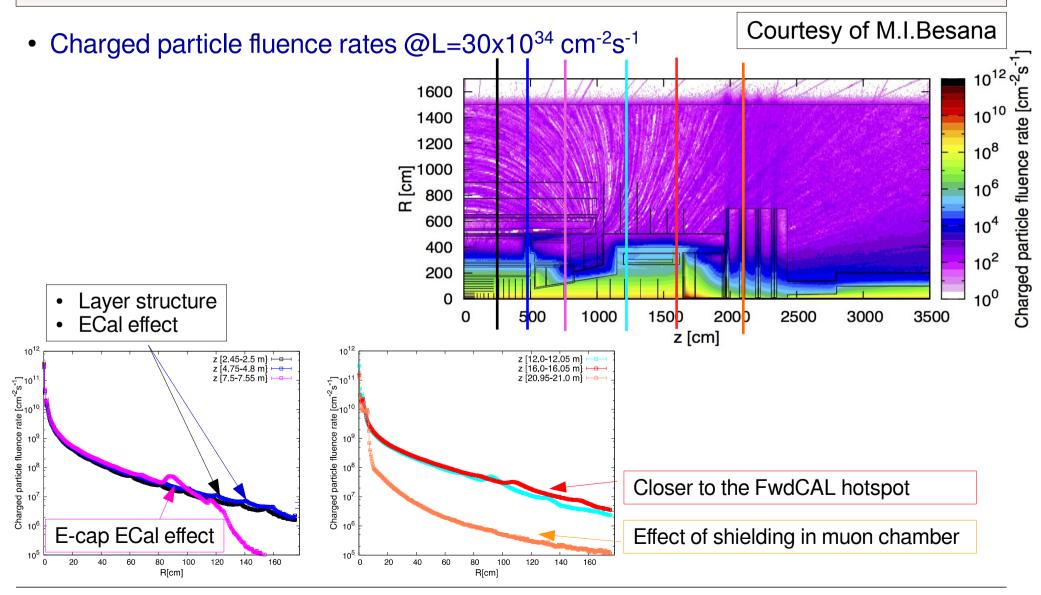

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

Courtesy of M.I.Besana

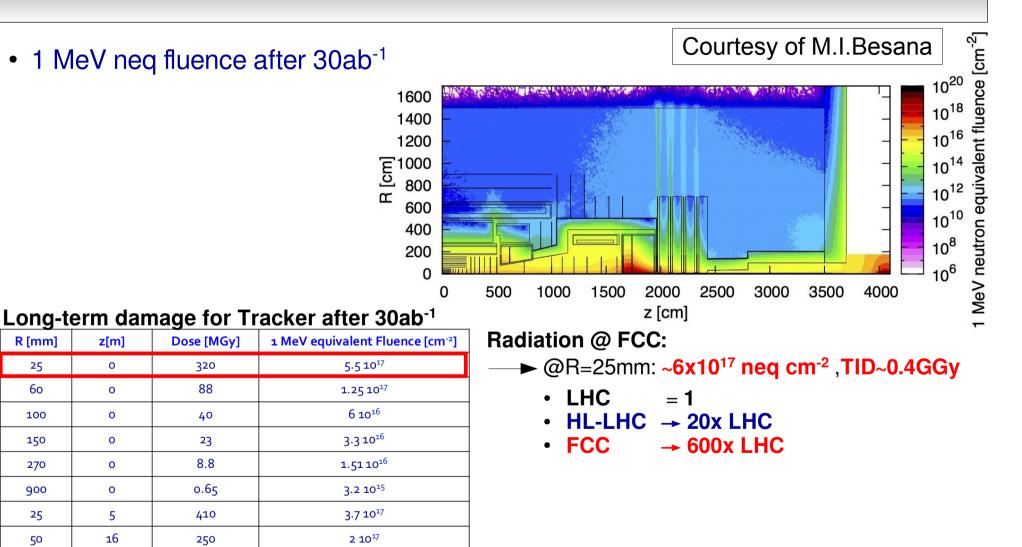
FCC-hh & Radiation Rates?


Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹

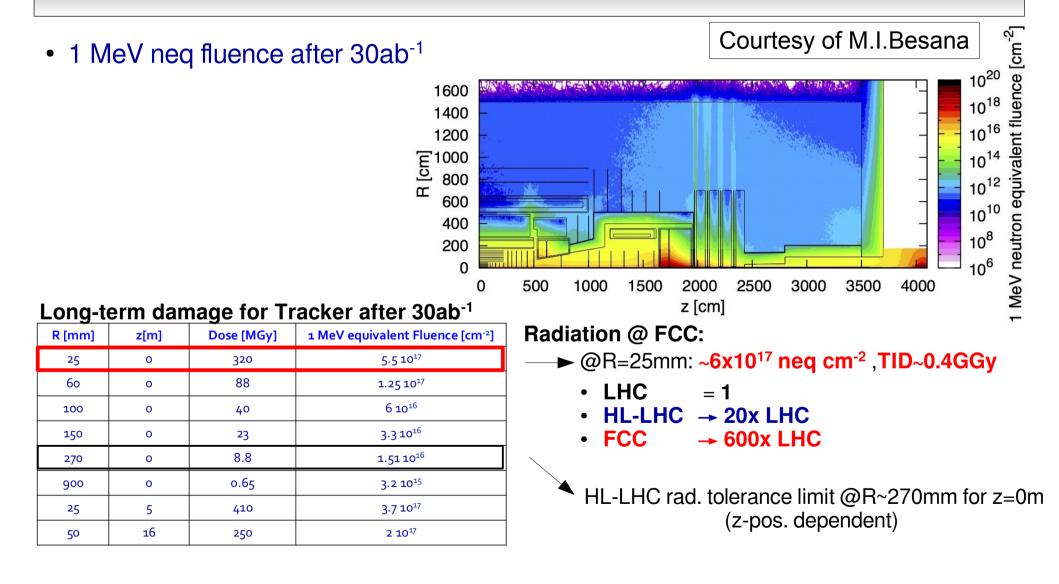
Courtesy of M.I.Besana


FCC-hh & Radiation Rates?

Neutron fluence rates @L=30x10³⁴ cm⁻²s⁻¹



Courtesy of M.I.Besana


Radiation Rates in Tracker

Tracker & Long-term Damage after 30ab⁻¹

Tracker & Long-term Damage after 30ab⁻¹

Tracker Layout & Design Driving Principles

• Key tracker parameters:

- **Granularity in R-** Φ → driven by requirement on dp₁/p₁ res. & occupancy limit (~1%)

$$\begin{bmatrix} \frac{\Delta p_{\rm T}}{p_{\rm T}} &= \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\ & {\sf B}: \, 4{\rm T} \\ \sigma_{{\sf R}-\Phi}: \, 10(7.5) {\sf um} \\ {\sf N}_{{\sf layers}}: \, 12 \\ \end{bmatrix} \sim 20\% @ 10{\rm TeV/c}$$

Tracker Layout & Design Driving Principles

• Key tracker parameters:

- Granularity in R- Φ - driven by requirement on dp₁/p₁ res. & occupancy limit (~1%)

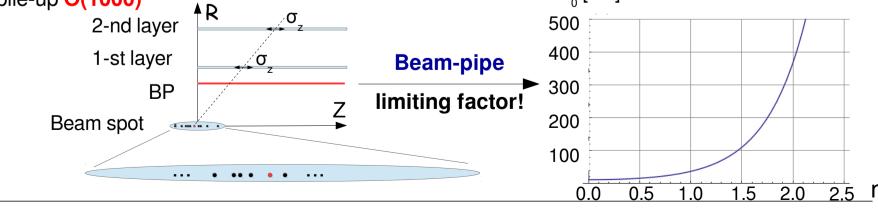
$$\begin{bmatrix} \frac{\Delta p_{\rm T}}{p_{\rm T}} &= \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\ & {\sf B}: \, 4{\rm T} \\ \sigma_{{\sf R}-\Phi}: \, 10(7.5) {\sf um} \\ {\sf N}_{{\sf layers}}: \, 12 \\ \end{bmatrix} \, \sim 20\% @ \, 10{\rm TeV/c}$$

 Number of layers N → driven by dp₁/p₁ res. & pattern recognition capabilities Note: res. improves as 1/√N_{layers}, but material budget (MB) increases as N_{layers}

Low MB Important!

Tracker Layout & Design Driving Principles

• Key tracker parameters:


- Granularity in R- Φ - driven by requirement on dp₇/p₇ res. & occupancy limit (~1%)

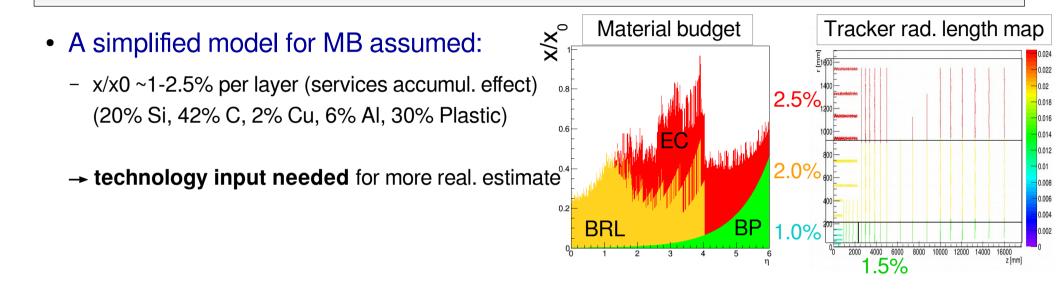
$$\begin{bmatrix} \frac{\Delta p_{\rm T}}{p_{\rm T}} &= \frac{\sigma[{\rm m}] \, p_{\rm T} [{\rm GeV/c}]}{0.3 \, B[{\rm T}] \, L^2[{\rm m}^2]} \, f(N) \\ & {\sf B}: \, 4{\rm T} \\ \sigma_{{\sf R}-\Phi}: \, 10(7.5) {\sf um} \\ {\sf N}_{{\sf layers}}: \, 12 \\ \end{bmatrix}$$

 Number of layers N → driven by dp₁/p₁ res. & pattern recognition capabilities Note: res. improves as 1/√N_{layers}, but material budget (MB) increases as N_{layers}

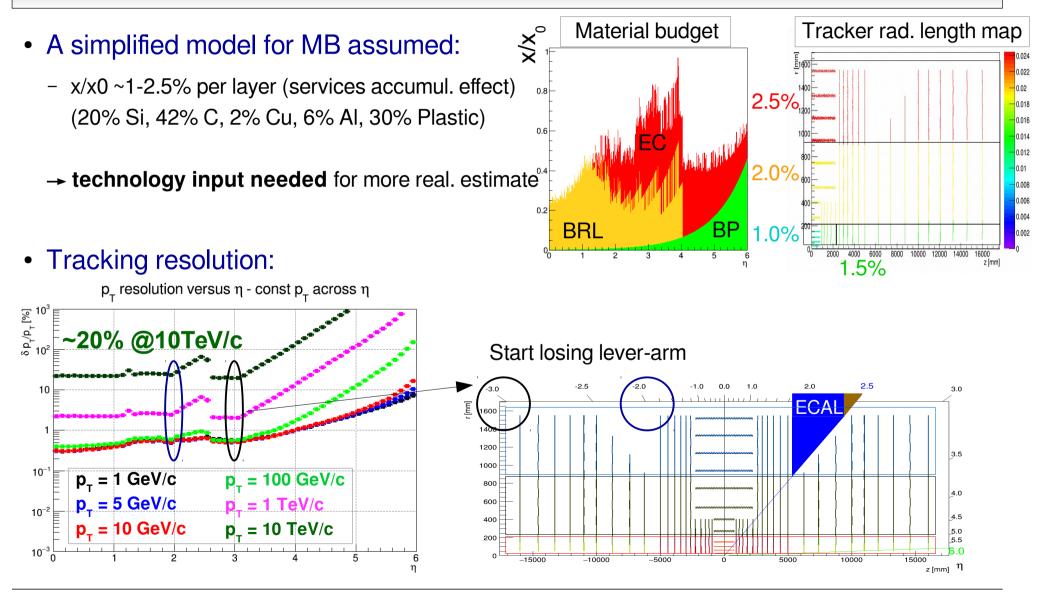
Low MB Important!

- **Granularity in Z** - driven by pattern recognition capabilities, occupancy limit & primary vertexing in given pile-up O(1000) δz_0 [um]

Z.Drasal, RD50 meeting in Krakow (7th June 2017)


Reference Tracker Layout (v3.03) 2.5 -2.5 -2.0 -1.0 0.0 1.0 2.0 -3.0 3.0 Shielding Surface: ~430m² r [mm] **ECAL** 1600 #Channels: 489.4M Striplets 1400 9964.4M 1200 5460.9M 3.5 1000 800 Macro-pixels Pixel R **1**0.9 m 4.0 600 due to occupancy 4.5 400 5.0 200 5.5 **Pixels** 4 (seed) BRL layers 6.0 0 -15000 -10000 -5000 5000 10000 15000 $_{z\,[mm]}$ η

- Pixels : 25x50um² (1-4th BRL layers, EC R1), 100/3x100um² (R2), 100/3x400um² (R3,R4)
- Macro-pixels: 100/3x400um²
- Strips : 100/3umx50mm (BRL), 100/3umx10mm (EC)

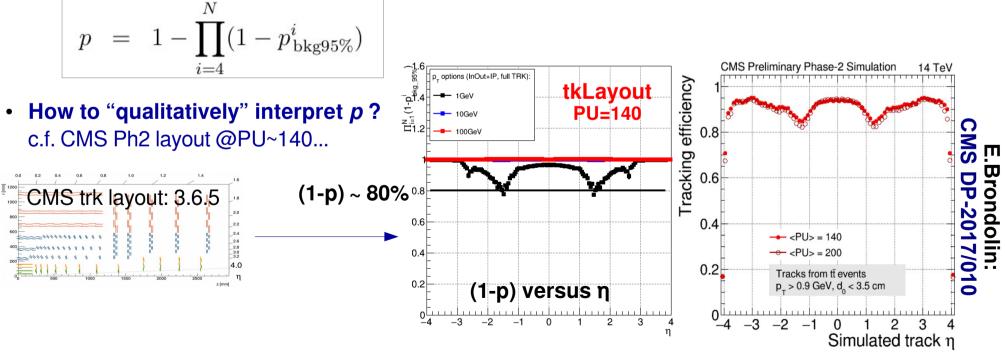

Reference Tracker Layout (v3.03) 2.5 -2.5 -2.0 -1.0 0.0 1.0 2.0 -3.0 3.0 Shieldina Surface: ~430m² [mm] **ECAL** 1600 #Channels: 489.4M **Striplets** 1400 9964.4M 1200 5460.9M 3.5 1000 800 Macro-pixels Pixel R **1**0.9 m 4.0 600 due to occupancy 4.5 400 5.0 200 5.5 **Pixels** 4 (seed) BRL layers 6.0n -10000 15000 -15000-50005000 10000 n η z [mm] ~dimensions of CMS tracker **Pixels** : 25x50um² (1-4th BRL layers, EC R1), 100/3x100um² (R2), Huge increase in #pixel channels wrt LHC 100/3x400um² (R3,R4) experiments due to requirements on tracking up to $\eta=6$ Macro-pixels: 100/3x400um² & resilience to high rad. levels generated by FCC-hh! **Strips** : 100/3umx50mm (BRL),

100/3umx10mm (EC)

Material Budget & Tracking Resolution

Material Budget & Tracking Resolution

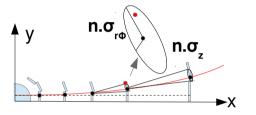
Pattern recognition (PR) Capabilities


- Granularity in Z strongly affects pattern recognition capabilities, so how to study PR analytically? Strategy: study "weak" spots in layout!
 - \rightarrow Assume **perfect seeding** (triplet) \rightarrow propagate σ_{ro} , σ_{r} to ith layer
 - → Calculate probability p to mis-match a real hit anywhere ↓ Y on the track with a bkg hit @95% CL in PU=1000

$$p = 1 - \prod_{i=4}^{N} (1 - p_{bkg95\%}^{i})$$

$$a$$
 95% conf. level
 $n \approx 2.45$
 $n \sigma_{ro}$
 $n \sigma_{z}$
 $x = x$

Pattern recognition (PR) Capabilities


- Granularity in Z strongly affects pattern recognition capabilities, so how to study PR analytically? Strategy: study "weak" spots in layout!
 - Assume perfect seeding (triplet) propagate σ_{r_0} , σ_z to ith layer
 - Calculate probability p to mis-match a real hit anywhere on the track with a bkg hit @95% CL in PU=1000

- To keep similar PR for FCChh @PU~1000, set bkg. prob. contamination p @20%

Understanding Track Propagator in Pattern Recognition

- 4 key parameters affecting propagation of error ellipse:
 - Multiple scattering & material effect @ 9 (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - Detector resolution

$$\sigma_{\rm MS}^2 \approx \langle \vartheta_{p_T}^2 \rangle \frac{d/X_0}{\sin(\vartheta + \alpha)} \Delta r^2 f_{\rm proj}$$

$$\langle \vartheta_{p_T}^2 \rangle = \left(\frac{13.6 \,{\rm MeV}}{\beta p_T c}\right)^2 \left(1 + 0.038 \ln \frac{d/X_0}{\sin(\vartheta + \alpha)}\right)^2$$

$$f_{\rm proj} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^2 {\rm proj. in } Z$$

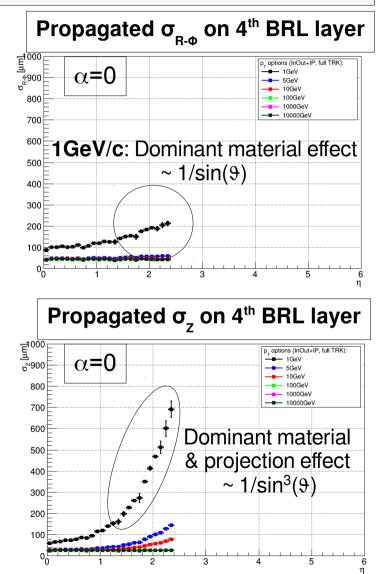
$$f_{\rm proj} = 1 {\rm proj. in } R - \Phi$$

$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{\rm loc}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{\rm loc}}^2}$$

$$A = \Delta r/2R$$

Understanding Track Propagator in Pattern Recognition

n.σ


n.σ,

►X

- 4 key parameters affecting propagation of error ellipse:
 - Multiple scattering & material effect @ ϑ (tilt angle α)
 - → Propagation distance
 - → Projection factor on det. plane
 - Detector resolution

$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1-A^2}\sin\alpha)^2 \sigma_{Z_{loc}}^2}$$
$$A = \Delta r/2R$$

Understanding Track Propagator in Pattern Recognition

n.σ

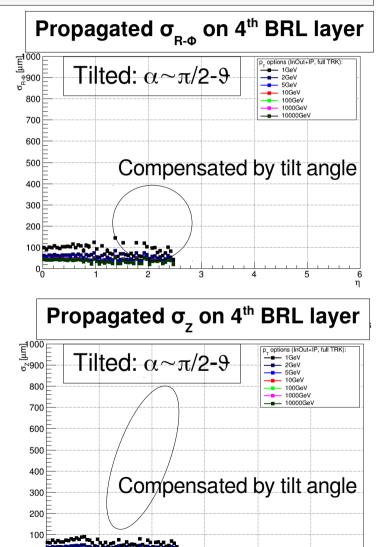
n.σ,

►X

≜ v

- 4 key parameters affecting propagation of error ellipse:
 - Multiple scattering & material effect @ 9 (tilt angle α)
 - → Propagation distance
 - -> Projection factor on det. plane
 - Detector resolution

$$\sigma_{\rm MS}^2 \approx \langle \vartheta_{p_T}^2 \rangle \frac{d/X_0}{\sin(\vartheta + \alpha)} \Delta r^2 f_{\rm proj}$$

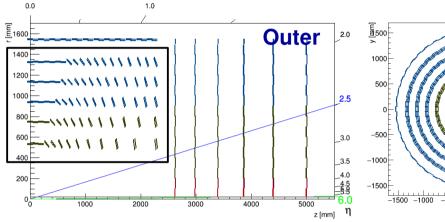

$$\langle \vartheta_{p_T}^2 \rangle = \left(\frac{13.6 \,{\rm MeV}}{\beta p_T c}\right)^2 \left(1 + 0.038 \ln \frac{d/X_0}{\sin(\vartheta + \alpha)}\right)^2$$

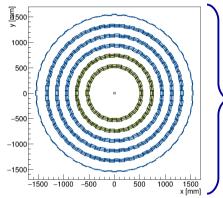
$$f_{\rm proj} = \left(\frac{1}{\sin(\vartheta + \alpha)}\right)^2 {\rm proj. in } Z$$

$$f_{\rm proj} = 1 {\rm proj. in } R-\Phi$$

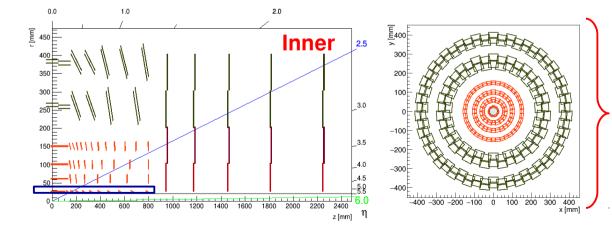
$$\sigma_{R\Phi} = \sqrt{\sigma_{R\Phi_{loc}}^2 + (A/\sqrt{1 - A^2} \sin \alpha)^2 \sigma_{Z_{loc}}^2}$$
$$A = \Delta r/2R$$

• To min. mat. effects, tracker in tilted layout advantageous!


3


6

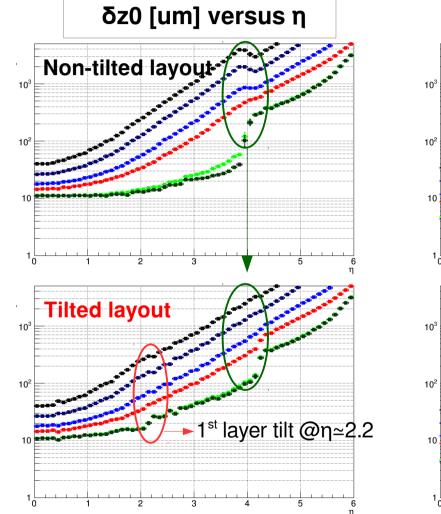
η

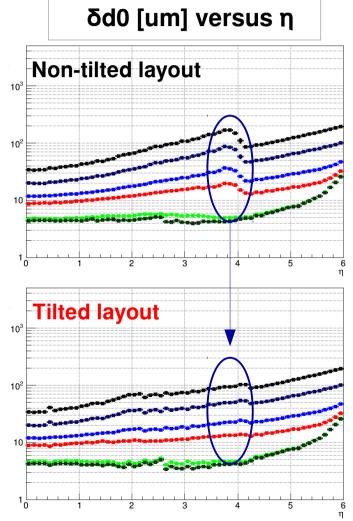

5

Tilted Geometry: Design Proposal v4.01

- Tilted layout of outer tracker driven by requirement to achieve ~0.2 bkg. contam.
 level (BCL) in PR:
 - uppermost layer designed non-tilted to keep the highest possible lever-arm
 - modules positioned to hermetically cover full luminous region ±75mm
 - → ECs strips res. in Z needed to be set to ~500um (~1mm OK)

- Tilted layout of inner tracker driven by ~0.2 BCL in PR & highest achievable z0 res. (to deal with primary vertexing @PU~1000):
 - → tilt angle of 1st layer: θ_{tilt} ≃ 10° optimized to achieve a compromise between low MB & higher radial position

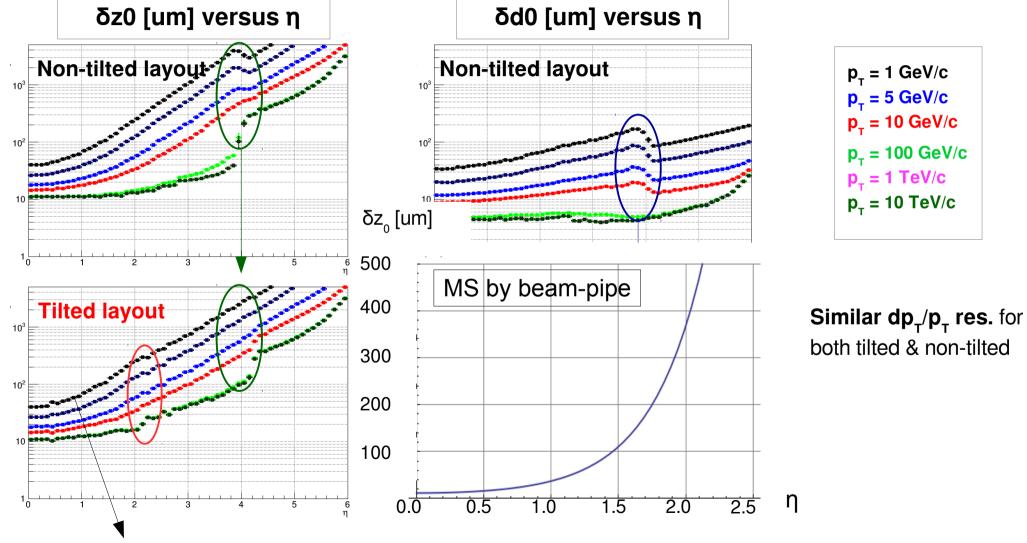

Tilted Layout & Pattern Recognition


Tilted layout v4.01: in \rightarrow out approach In-Out: Bkg contam. prob. accumulated accross N layers @95% CL In-Out: Bkg contam. prob. accumulated accross N layers @95% CL 1 - ∏^N (1-pⁱ_{bkg_95%}) 1. 1 - II^N (1-p¹_{bkg_95%}) 1. p_ options (InOut+IP, full TRK): p options (InOut+IP, full TRK): - 1GeV 1GeV 2GeV - 2GeV (1-p) ~ 0% 5GeV 5GeV (1-p) ~ 10° 0GeV 10GeV 100GeV 100GeV 1000GeV 1000GeV 10000GeV 10000GeV 0.6 0.6 0.4 0.4 (1-p 80% 0.2 0.2 3 5 2 6 2 3 4 5 6 n n

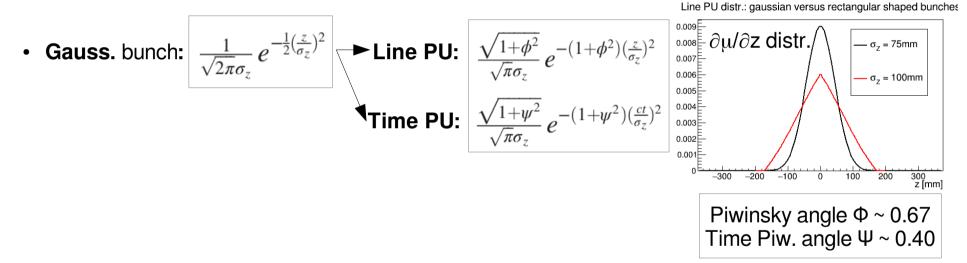
Non-tilted layout v3.03: in→out approach

- → With tilted layout the bkg. contam. level @~20% achievable in PU~1000 for p_r=1GeV/c (limit value driven by HL-LHC scenario with PU~140 & CMS Phase 2 upgrade tracker layout)
- → Limits: Mat. budget assumed per module → NOT fully realistic tilted design → need to consider realistic engineering with services, cooling & support structure (technology input necessary)!

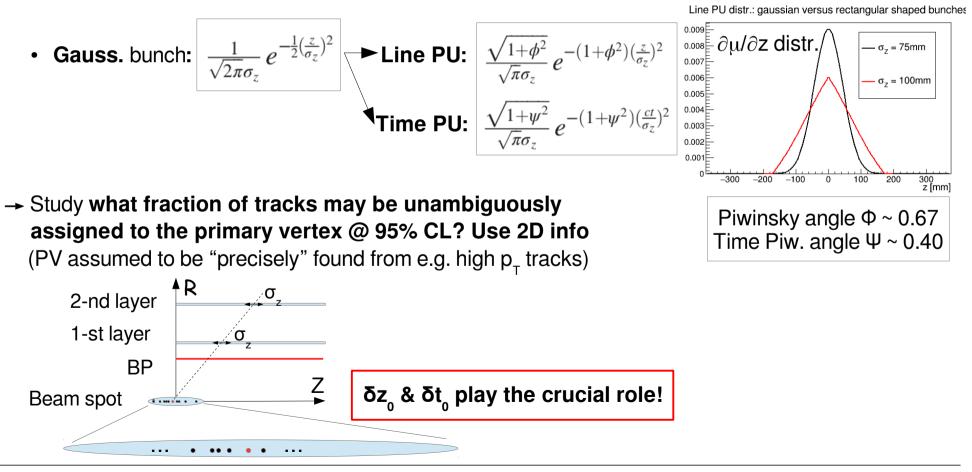
Tilted Layout: Improvement in Tracking Performance



 $p_{T} = 1 \text{ GeV/c}$ $p_{T} = 5 \text{ GeV/c}$ $p_{T} = 10 \text{ GeV/c}$ $p_{T} = 100 \text{ GeV/c}$ $p_{T} = 1 \text{ TeV/c}$ $p_{T} = 10 \text{ TeV/c}$

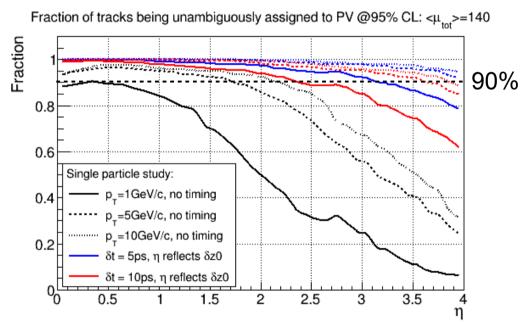

Similar dp_T/p_T res. for both tilted & non-tilted

Tilted Layout: Improvement in Tracking Performance



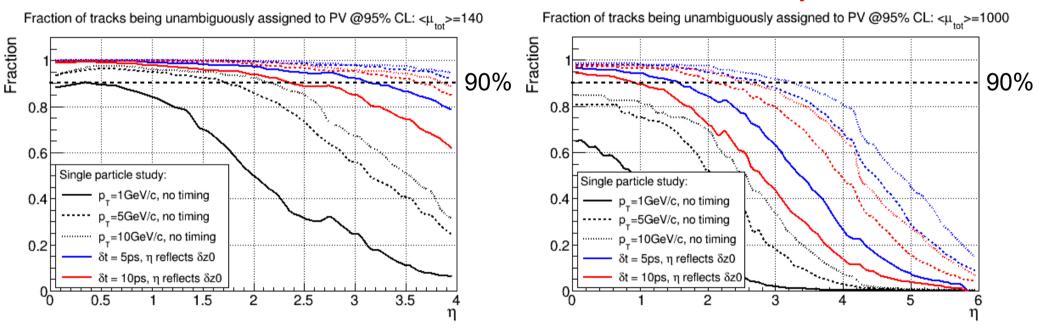
→ For tilted layout, the dominant effect for 1GeV/c curve shape is beam-pipe material!

- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate **1000 PU** vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)


- How the pile-up (PU)~1000 degrades primary vertexing? Does the timing info help?
 - → Dependent on scenario for luminous region (Gauss, "rectangular",...) → simulate 1000 PU vertices according to Gaussian (HL-LHC) Line & Time PU densities (c.f.: PhysRevSTAB.17.111001)

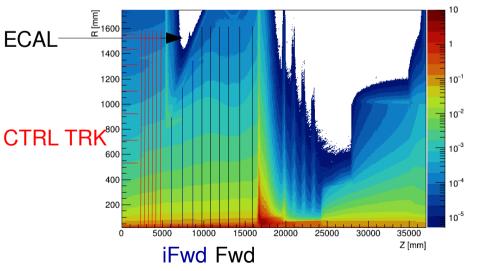
Z.Drasal, RD50 meeting in Krakow (7th June 2017)

- Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout



- Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker


FCC-hh scenario @ PU=1000 Tilted layout

- @PU~1000 avg. distance between vertices (Φ~0.67) ~110um @z=0m, hence the error due to mult. scattering in beam-pipe is for η>1.5 already larger than the avg. vertex distance — timing essential
- With current FCC-hh scheme & need for eta coverage up-to 6 the primary vertexing @ PU~1000 seems very difficult for η>4.0, even with timing res. ~5ps (several time measur. per track)

Occupancy & Expected Data Rates @ PU=1000

- Have a look at the tracker granularity in a view of hit occupancy (~ <1%), what data rates may we expect at PU~1000?
 - → Use Fluka simulated charged particles fluence per pp collision [cm⁻²] scaled by 1000 PUs
 - → Calculate occupancy & hit rates for 2 scenarios:
 - Non-triggered data @ f = 40MHz
 - Triggered data @ f ~ 1MHz (given ~ by hardware limits, e.g. FPGA)
 - Assume binary read-out (spars. read-out scheme)

Charged particles fluence [cm⁻²] per 1 pp collision

Inner: Occupancy & Expected Data Rates

Radius [mm]: 25.0 60.0 100.0 150.0 270.0 400.0 Module max occupancy (max[sen1,sen2])[%]: 0.45 0.11 0.05 0.02 0.08 0.04 #Hit-channels per module per BX: 2694 741 333 166 314 150 Module axa occupancy (max[sen1,sen2])[%]: 2.0 2.2 2.2 2.2 2.2 2.1 2.1 Module addwidth/(addr+clsWidth/[kb]: 57.88 15.93 7.16 3.57 6.44 3.08 Mod. bandwidth (matrix*it/bc/hannel) [kb]: 685.00 820.00	Layer no :	1	2	3	4	5	6	Total [TB/s]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Radius [mm] :	25.0	60.0	100.0	150.0	270.0	400.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Module max occupancy (max[sen1,sen2])[%] :	0.45	0.11	0.05	0.02	0.08	0.04		→ Hit occupancy [%] (~ <1%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#Hit-channels per module per BX :	2694	741	333	166	314	150		
Mod. bandwidth(#chnls*(addr+clsWidth)[kb]: 57.88 15.93 7.16 3.57 6.44 3.08 Mod. bandwidth (matrix*1b/channel) [kb]: 685.00 820.00 820.00 820.00 820.00 840.00 384.00 Data rate per layer - 40MHz,spars [Tb/s]: 15.1 9.5 6.9 5.1 3.5 2.4 5.3 Data rate per ladder - 40MHz,spars [Gb/s]: 1104.0 607.8 273.0 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s]: 2207.99 607.83 273.0 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s]: 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 251.82 57.91 26.01 12.98 4.69 2.24 → Data rate per cm ² (40MHz) → Data rate per cm ² (40MHz) → Data rate per cm ² - 40Mhz,spars [Gb/s/cm^2]: 61.30 1.45 0.65 0.32 0.12 0.06 → Data rate per cm ² (40MHz) → Data	Module avg occupancy (max[sen1,sen2])[%]:	0.38	0.09	0.04	0.02	0.08	0.04		
Mod. bandwidth (matrix*1b/channel) [k]: 685.00 820.00 820.00 820.00 84.00 384.00 Data rate per layer - 40MHz,spars [Tb/s]: 603.7 379.9 277.3 202.2 138.7 97.5 212.4 Data rate per layer - 1MHz,spars [Tb/s]: 15.1 9.5 6.9 5.1 3.5 2.4 5.3 Data rate per ladder - 40Mhz,spars [Gb/s]: 24159.7 24313.2 10920.7 5449.3 4177.1 1996.5 Data rate per ladder - 40Mhz,spars [Gb/s]: 2207.99 607.83 273.02 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s]: 252.0 15.20 16.83 3.41 6.14 2.94 Data rate per cm ² 2 40Mhz,spars [Gb/s/cm ² 2]: 25.30 136.2 0.12 0.06 -> Data rate per cm ² (40MHz) Data rate per cm ² 2 40Mhz,spars [Gb/s/cm ² 2]: 63.0 1.45 0.65 0.32 0.12 0.06 -> Data rate per cm ² (40MHz) ->	Module bandwidth/(addr+clsWidth=2b[b] :	22	22	22	22	21	21		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mod. bandwidth(#chnls*(addr+clsWidth)[kb] :	57.88	15.93	7.16	3.57	6.44	3.08		
Data rate per layer - 1MHz,spars [Tb/s]: 15.1 9.5 6.9 5.1 3.5 2.4 5.3 Data rate per ladder - 40Mhz,spars [Gb/s]: 44159.7 24313.2 10920.7 5449.3 4177.1 1996.5 Data rate per ladder - 1Mhz,spars [Gb/s]: 1104.0 607.8 273.0 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s]: 2207.99 607.83 273.02 136.23 245.71 117.44 Data rate per module - 1Mhz,spars [Gb/s]: 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 63.0 1.45 0.65 0.32 0.12 0.06 → Data rate per cm ² (40MHz) Average radius [mm]: 64.8 153.0 251.1 35.3 65.2 1.6 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 1.6 1.6 Extreme data flows >>10Gb/s/module (even triggered @ 1MHz) 0.9 1.6 Data rate per ringLayer-1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 1.6 1.6	Mod. bandwidth (matrix*1b/channel) [kb] :	685.00	820.00	820.00	820.00	384.00	384.00)	
Data rate per ladder - 40Mhz,spars [Gb/s] : 44159.7 24313.2 10920.7 5449.3 4177.1 1996.5 Data rate per ladder - 1Mhz,spars [Gb/s] : 1104.0 607.8 273.0 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s] : 2207.99 607.83 273.02 136.23 245.71 117.44 Data rate per module - 1Mhz,spars [Gb/s] : 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 251.82 57.91 26.01 12.98 4.69 2.24 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 6.30 1.45 0.65 0.32 0.12 0.06 Challenge: 6.3 Gb/s/cm ² 0.65 0.32 0.12 0.06 Ring no : 1 2 3 4 Average radius [mm] : 64.8 153.0 251.1 353.3 Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 1.6 Data rate per cm^2 - 40Mhz,spars [Tb/s]: 9.3.7 2.6 1.9 1.6 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.4 15.67 6.62 3.42	Data rate per layer - 40MHz, spars [Tb/s] :	603.7	379.9	277.3	202.2	138.7	97.5	212.4	→ Layer data rate (40MHz)
Data rate per ladder - 40Mhz,spars [Gb/s] : 44159.7 24313.2 10920.7 5449.3 4177.1 1996.5 Data rate per ladder - 1Mhz,spars [Gb/s] : 1104.0 607.8 273.0 136.2 104.4 49.9 Data rate per module - 40Mhz,spars [Gb/s] : 2207.99 607.83 273.02 136.23 245.71 117.44 Data rate per module - 1Mhz,spars [Gb/s] : 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 251.82 57.91 26.01 12.98 4.69 2.24 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 6.30 1.45 0.65 0.32 0.12 0.06 Challenge: 6.3 Gb/s/cm ² 0.65 0.32 0.12 0.06 Ring no : 1 2 3 4 Average radius [mm] : 64.8 153.0 251.1 353.3 Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 1.6 Data rate per cm^2 - 40Mhz,spars [Tb/s]: 9.3.7 2.6 1.9 1.6 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.4 15.67 6.62 3.42	Data rate per layer - 1MHz, spars [Tb/s] :	15.1	9.5	6.9	5.1	3.5	2.4	5.3	
Data rate per module - 40Mhz, spars [Gb/s] : 2207.99 607.83 273.02 136.23 245.71 117.44 Data rate per module - 1Mhz, spars [Gb/s] : 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]: 251.82 57.91 26.01 12.98 4.69 2.24 \rightarrow Data rate per cm ² (40MHz) Data rate per cm^2 - 1Mhz, spars [Gb/s/cm^2]: 6.30 1.45 0.65 0.32 0.12 0.06 \rightarrow Data rate per cm ² (1MHz, trigger Ring no : 1 2 3 4 Total [TB/s] \rightarrow Data rate per cm ² (1MHz, trigger Average radius [mm] : 64.8 153.0 251.1 353.3 \rightarrow Data rate per cm ² (1MHz, trigger Data rate per ringLayer-40MHz, spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 65.2 66	Data rate per ladder - 40Mhz, spars [Gb/s] :	44159.7	24313.2	10920.7	5449.3	8 4177.1	1996.5	ō	
Data rate per module - 1Mhz, spars [Gb/s] : 55.20 15.20 6.83 3.41 6.14 2.94 Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]: 251.82 57.91 Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]: 251.82 57.91 Data rate per cm^2 - 1Mhz, spars [Gb/s/cm^2]: 6.30 1.45 Challenge: 6.3 Gb/s/cm ² End to the formation of the form	Data rate per ladder - 1Mhz, spars [Gb/s] :	1104.0	607.8	273.0	136.2	104.4	49.9		
Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2]: 251.82 57.91 Data rate per cm^2 - 1Mhz,spars [Gb/s/cm^2]: 6.3026.0112.984.692.24 0.06 \rightarrow Data rate per cm² (40MHz) \rightarrow Data rate per cm² (1MHz, triggerMata rate per cm² - 1Mhz,spars [Gb/s/cm²]: 6.301.4526.0112.984.692.24 0.06 \rightarrow Data rate per cm² (40MHz) \rightarrow Data rate per cm² (1MHz, triggerRing no :1234Total [TB/s]Average radius [mm] :64.8153.0251.1353.3 0.180.08 0.08Data rate per ringLayer-40MHz,spars [Tb/s]:194.2148.2105.174.3 1.665.2 1.6Data rate per cm² - 40Mhz,spars [Tb/s]:4.93.72.61.965.2 1.6Data rate per cm² - 40Mhz,spars [Gb/s/cm²]64.4415.676.623.42	Data rate per module - 40Mhz,spars [Gb/s] :	2207.99	607.83	273.02	136.23	3 245.71	117.44	1	
Data rate per cm^2 - 1Mhz, spars [Gb/s/cm^2]:6.301.450.650.320.120.06Ring no :1234Total [TB/s]Average radius [mm] :64.8153.0251.1353.3Module max occupancy (max[sen1,sen2])[%]:0.460.130.180.08Data rate per ringLayer-40MHz, spars [Tb/s]:194.2148.2105.174.365.2Data rate per ringLayer-1MHz, spars [Tb/s]:4.93.72.61.91.6Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]64.4415.676.623.42	Data rate per module - 1Mhz, spars [Gb/s] :	55.20	15.20	6.83	3.41	6.14	2.94		
Data rate per cm^2 - 1Mhz, spars [Gb/s/cm^2]:6.301.450.650.320.120.06Ring no :1234Total [TB/s]Average radius [mm] :64.8153.0251.1353.3Module max occupancy (max[sen1,sen2])[%]:0.460.130.180.08Data rate per ringLayer-40MHz, spars [Tb/s]:194.2148.2105.174.365.2Data rate per ringLayer-1MHz, spars [Tb/s]:4.93.72.61.91.6Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2]64.4415.676.623.42	Data rate per cm ² - 40Mhz,spars [Gb/s/cm ²]	: 251.82	57.91	26.01	12.98	4.69	2.24		\rightarrow Data rate per cm ² (40MHz)
Challenge: 6.3 Gb/s/cm ² Ring no : 1 2 3 4 Total [TB/s] Average radius [mm] : 64.8 153.0 251.1 353.3 Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 Data rate per ringLayer- 1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42	Data rate per cm ² - 1Mhz,spars [Gb/s/cm ²]:	6.30	1.45	0.65	0.32	0.12	0.06		\rightarrow Data rate per cm ² (1MHz, trigger)
Average radius [mm]: 64.8 153.0 251.1 353.3 Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 Data rate per ringLayer-1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42		Cha	llenge	e: 6.3	Gb/s	/cm ²			• • • • • • • • • •
Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 Data rate per ringLayer-1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42	Ring no :	2	3	4	То	tal [TB/	s]		
Module max occupancy (max[sen1,sen2])[%]: 0.46 0.13 0.18 0.08 Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 Data rate per ringLayer-1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42	Average radius [mm] :	4.8 1	53.0 2	51.1 35	53.3				
Data rate per ringLayer-40MHz,spars [Tb/s]: 194.2 148.2 105.1 74.3 65.2 Data rate per ringLayer- 1MHz,spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 Data rate per cm^2 - 40Mhz,spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42	Module max occupancy (max[sen1,sen2])[%]: ().46 0	.13 0.	18 0.	08		Г	Extrom	a data flavva sa 10Ch/a/madula
Data rate per ringLayer- 1MHz, spars [Tb/s]: 4.9 3.7 2.6 1.9 1.6 (even triggered @ 1MHz) Data rate per cm^2 - 40Mhz, spars [Gb/s/cm^2] 64.44 15.67 6.62 3.42		94.2 1	48.2 10	05.1 74	1.3 65	.2			
Data rate per cm ² - 40Mhz,spars [Gb/s/cm ²] 64.44 15.67 6.62 3.42									(even triggered @ 1MHz)
	Data rate per cm ² - 40Mhz,spars [Gb/s/cm ²]	64.44 1	5.67 6.	62 3.	42		-' L ∕	1	
		Cha	allenge	e: 1.6	Gb/s	$/cm^2$	/		
Challenge: 1.6 Gb/s/cm ²									

Outer & Fwd: Occupancy & Data Rates

-> Expected huge tracker data rates: 766 TB/s (untriggered), 19 TB/s (triggered @ 1MHz)

Layer no :	Outor	1	2	3	4 5	6	Tot	al [TB/s	5]								
Radius [mm] :	Outer:	530.0	742.4	937.2	1132.01	326.7 15		-									
Module max occupancy (ma	ax[sen1,sen2])[%]:	0.02	0.01	0.75	0.43 0	.27 0.2	1										
Data rate per layer - 40MH	z, spars [Tb/s] :	226.0	134.5	63.6	43.9 3	1.7 28.	1 66.	0	1								
Data rate per layer - 1MHz	z, spars [Tb/s] :	5.6	3.4	1.6	1.1 0	.8 0.7	1.6										
Data rate per cm^2 - 40M	Ahz, spars [Gb/s/cm^2	2]: 1.38	0.61	0.23	0.13 0	.08 0.0)6										
Data rate per cm^2 - 1M	nz,spars [Gb/s/cm^2]	: 0.03	0.02	0.01	0.00 0	.00 0.0	00										
Ring no :		1	2 :	3	4 5	6	7	8	9	10	11	12	13	14	15	16	Total [TB/s]
Average radius [mm] :		64.6	151.5	251.0	352.0 45	1.6 553.	6 651.	1 753.6	850.8	953.5	1049.3	7 1152.0	6 1247.0	6 1350.	8 1444.	7 1522.	8
Module max occupancy (max	x[sen1,sen2])[%]:	0.58	0.15 (0.21 (0.10 0.	06 0.04	0.02	0.02	0.01	0.23	0.20	0.13	0.12	0.08	0.08	0.05	
Data rate per ringLayer-40A	MHz, spars [Tb/s]:	263.8	213.3	153.4	109.8 93	.2 63.1	63.8	49.9	42.5	28.5	21.9	19.2	15.7	13.8	11.4	4.6	146.0
Data rate per ringLayer- 1M	Hz,spars [Tb/s]:	6.6	5.3	3.8	2.7 2.	3 1.6	1.6	1.2	1.1	0.7	0.5	0.5	0.4	0.3	0.3	0.1	3.6
Data rate per cm^2 - 40M	nz,spars [Gb/s/cm^2]:	71.30	18.72	7.98	4.18 2.	65 1.54	1.18	0.78	0.62	0.36	0.26	0.21	0.15	0.13	0.10	0.08	
Data rate per cm ² - 1Mh	z,spars [Gb/s/cm^2]:	1.78	0.47 (0.20 (0.10 0.	07 0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	
Ring no :	iFWD:	1	2	3	4	5	6	7	8	9	10	11	12	13	Tota	al [TB/s	1
Average radius [mm] :		72.8	167.5	266.5	366.	464.9	564.8	664.6	766.8	866.7	969.0	1068.	.4 1170	.9 1269	9.8		
Module max occupancy (m	ax[sen1,sen2])[%]:	0.99	0.13	0.20	0.11	0.07	0.04	0.03	0.02	0.02	0.48	0.24	0.12	0.07	7		-
Data rate per ringLayer-40	DMHz,spars [Tb/s]:	165.8	114.5	81.6	64.9	50.6	39.3	42.3	30.0	43.3	16.8	7.8	2.8	1.9	82.	.7	
Data rate per ringLayer- 1		4.1	2.9	2.0	1.6	1.3	1.0	1.1	0.8	1.1	0.4	0.2	0.1	0.0			
Data rate per cm ² - 40			18.17				1.87	1.44	0.94	1.18	0.64	0.27	0.18	3 0.1	1		
Data rate per cm ² - 1M	hz,spars [Gb/s/cm^2]]: 1.64	0.45	0.20	0.12		0.05	0.04	0.02	0.03	0.02	0.01	0100	0.0	-		
Ring no :	FWD:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total [TB/s]
Average radius [mm] :		97.1	190.1	288.9	388.3	487.1	588.6	689.4	791.4							8 1498.	D
Module max occupancy (ma Data rate per ringLayer-40		0.28 318.3	0.11 244.3	0.20	0.12	0.08 121.5	0.05	0.04	0.03			0.34 35.5	0.25	0.16	0.11	0.09	193.4
Data rate per ringLayer- 1/		8.0	6.1	4.5	3.7	3.0	2.9	2.5	1.9			0.9	0.6	0.5	0.4	0.3	4.8
Data rate per cm ² - 40N			17.20	8.37	5.17	3.35	2.37	1.71	1.21			0.40	0.26	0.19	0.13	0.09	4.0
Data rate per cm ² - 40%			0.43	0.21	0.13	0.08	0.06	0.04	0.03			0.01	0.01	0.00	0.00	0.09	
Data late per cili 2 " IMI	iz, spars [ob/s/cill Z].	1.22	0.45	0.21	0.15	0.00	0.00	0.04	0.05	0.05	0.02	0.01	0.01	0.00	0.00	0.00	

Z.Drasal, RD50 meeting in Krakow (7th June 2017)

Summary & Challenges

• The key tracker parameters have been studied & optimized:

- → Current layout: ~430m² (391m² in tilted layout) of Si with #channels: 5461M (pixels), 9964M (macro-pixels), 489M (strips)
- → The granularity in R- Φ driven mostly by dp₁/p₁ @p₁=10TeV/c → achieved dp₁/p₁ ~20%
- → The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:
 - Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions
 → realistic engineering (technology input) with services, cooling & support structure important!
 - Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only with precise timing information σ_t~10ps (2D vertexing) → the limiting factor for high η coverage is beam-pipe material
- → Expected data rates (766 TB/s untriggered, 19 TB/s triggered @1MHz) implicate need for new read-out technologies (high speed, low power optical links) & dedicated trigger design!
- → Expected 1MeV neq fluence ~6x10¹⁷cm⁻² & TID ~0.4GGy @ R=25mm represent new challenges for the tracker (vertex detector) technologies

Summary & Challenges

• The key tracker parameters have been studied & optimized:

- → Current layout: ~430m² (391m² in tilted layout) of Si with #channels: 5461M (pixels), 9964M (macro-pixels), 489M (strips)
- → The granularity in R- Φ driven mostly by dp₁/p₁ @p₁=10TeV/c → achieved dp₁/p₁ ~20%
- → The granularity in Z driven by prim. vertexing & pattern recognition capabilities @PU=1000:
 - Due to minimized material budget tracker in tilted layout very advantageous (even for the vertex detector) to achieve similar pattern recognition performance as with PU~140 & HL-LHC conditions
 → realistic engineering (technology input) with services, cooling & support structure important!
 - Primary vertexing & correct PV assignment @PU=1000 seems feasible up-to η~4, but only with precise timing information σ_t~10ps (2D vertexing) → the limiting factor for high η coverage is beam-pipe material
- → Expected data rates (766 TB/s untriggered, 19 TB/s triggered @1MHz) implicate need for new read-out technologies (high speed, low power optical links) & dedicated trigger design!
- → Expected 1MeV neq fluence ~6x10¹⁷cm⁻² & TID ~0.4GGy @ R=25mm represent new challenges for the tracker (vertex detector) technologies

→ Dedicated R&D is a key to success!