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With the introduction of resistive elements in the detector volumes, like for Restistive Plate
Chambers or resistive MICROMEGAS, the signal induced on the readout electrodes will not only
be determined by the movement of the primary charges but also by the movement of charges
inside these resistive elements. This report will present an extension of Ramo's theorem to include
these effects, that might have an application on solid state detectors where resistive layers are
used either to evacuate charge or to introduce discharge protection.
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Detectors with resistive elements

Resistive Plate Chambers
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2mm Bakelite, p=101°Qcm 3mm glass, p= 2x102Qcm 0.4mm glass, p=1013Qcm

Thin layers of ®100kQ/[] to 10MQ/[] to apply HV.

Silicon Detectors

depletion layer

Resistive MICROMEGAS, TGCs
Thin layers of =100kQ/] to 10MQ/[1 for discharge protection and to apply HV.
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Abstract

Most particle detectors are based on the principle that charged particles leave a trail
of ionization in the detector and that the movement of these charges in an electric
field induces signals on the detector electrodes. Assuming detector elements that
are insulating and electrodes with infinite conductivity one can calculate the signals
with an electrostatic approximation using the so called '"Ramo Theorem’. This is the
standard way for calculation of signals e.g. in wire chambers and silicon detectors. In
case the detectors contain resistive elements, which is e.g. the case in resistive plate
chambers or underdepleted silicon detectors, the time dependence of the signals
is not only given by the movement of the charges but also by the time dependent
reaction of the detector materials. Using the quasi static approximation of Maxwell’s
equations we present an extended formalism that allows the calculation of induced
signals for detectors with general materials by time dependent weighting fields. As
examples we will discuss the signals in resistive plate chambers and underdepleted
silicon detectors.
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Electric fields, weighting fields, signals and charge
diffusion in detectors including resistive materials

W. Riegler

CERNEF
CH-1211 Geneve 23, Switzerland

E-mail: werner.rieglerf@cern.ch

AgpsTrACT: In this report we discuss static and time dependent electric fields in detector geometries
with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive
the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout
pads and readout strips in these geometries. The effect of *bulk’ resistivity on electric fields and
signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail,
and the conditions for allowing the effect to be described by the diffusion equation is discussed. We
apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGA 5
detectors including resistive layers for charge spreading and discharge protection as well as detectors
using resistive charge division readout like the MicroCAT detector. We also discuss in detail how
resistive layers affect signal shapes and increase crosstalk between readout electrodes.

Keyworps: Charge induction; Detector modelling and simulations II (electric fields, charge trans-
port, multiplication and induction, pulse formation, electron emission, etc); Micropattern gaseous
detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid,

etc): Resistive-plate chambers
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Quasistatic Approximation of Maxwell’s Equations

To include the frequency dependence of € and ¢ we work in the Laplace domain
l.e. we write

OE (Z,t)
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where we have assumed that at £ = 0 all fields and charges are zero. Maxwell’s
equations for a linear isotropic medium with permittivity (Z, s) and conduc-
tivity o(Z, s) then read as
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where j’; is an 'externally impressed’ current that is connected with an ’ex-

ternal’ charge density by ‘?59 = —8p,
set

. Assuming weak conductivity ¢ we can
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and by taking the divergence of the second equation in (4) we find
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which we can write as

Ve(Z, s)V]®(&,s) = —p,(Z,s) with €(Z,s) =e(Z,s)+ -0(Z,s) (7)

Assuming ‘slow’
changes of the fields
we can neglect
Faraday’s induction
law ...

. and we find back
the Poisson equation
with an effective
permittivity in the
Laplace domain.

j=oE

o=1/p

O ... conductivity
p ... volume resistivity



Quasistatic Approximation

equations: Knowing the solution of the Poisson equation for a charge distribution p(Z) embedded in
a geometry of a given permittivity £(Z), we find the time dependent solution (in the Laplace domain
with parameter s) for an ’externally impressed’ charge density p.(Z,s) and a geometry that in addition
includes a finite (weak) conductivity o(F) by replacing () with £(7) + o(Z) /s and p(F) with p.(T, s).
For detector applications the volume resistivity p(x) = 1/o(Z) is traditionally used.

As an example we look at the potential of a point charge ) in a medium of constant permittivity e,
which is given by
Q

= 1
Blr) = (1)
In case the medium has a conductivity ¢ and we place the ’external’ charge @ at t = 0, i.e. Q(t) = QO(t)

and therefore Q(s) = Qp/s, we replace € by £ + o/s and @ by (/s and perform the inverse Laplace
transform, which gives

Hrs) =t o Hnt) = o et T=clo=pe @)
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Examples
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Single Gap RPC

ryz) = ) 1 - o(kr _ ok, 2 _ie—k{zz—ﬂ_
s = e AR FACOR> | e
T, z) = @ 1 - r _ z _ie—kfz—znl_
bulr ) = e g [ o) |tk 2) - o | ax
fi(k,z) = Qsinh(k(b+ 2))sinh(k(g — z2))/(e0D(k))
falk,z) = Q@sinh(k(g — z2))[sinh(bk) cosh(kz) + &, cosh(bk) sinh(kz)] /(0 D(k))
falk,z) = @Qsinh(k(g — z))[sinh(bk) cosh(kzz) + &, cosh(bk) sinh(k=z2)]|/(coD(k))

with
D(k) = sinh(bk) cosh(gk) + =, cosh(bk) sinh(gk)

Werner Riegler, CERN



Single Gap RPC
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Figure 11: a) Current density in(r) at z = —b. The exact curve together with the 2" order and 4*® order approximation

from Eq. and the exponential approximation from Eq. b) Total current at z = —b flowing inside a radius r from Eq.
@7
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Single Gap RPC, increasing rate capability by a surface R
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Infinitely extended thin resistive layer
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Figure 15: a) A resistive layer with surface resistance R [{}/square|. b) The fields for this single layer can be calculated from

the indicated 3-layer geometry by performing the indicated limits of the expressions for zp, 20, z3.

Werner Riegler, CERN
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Infinitely extended resistive layer

First we investigate an infinitely extended layer as shown in Fig. 12a. The charge Q will cause
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r g Q(X:Yst) y y
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e Q*e(t) it
/
Figure 12: a) A point charge placed at an infinitely extended resistive layer at ¢ = 0. b) The solution for the time dependent
potential is equal to a point charge moving with velocity v olong the z-axis.

@3(x,y,z,t) for z>0

e
RO
a) - b)

Q 1 Q 1
¢'3 (T! Z, t) =
ameg /12 + (—z + vt)? dmen /T2 + (z + vt)?

‘;bl(?‘az:t) = (111)

We therefore conclude that the field due to a point charge placed on an infinite resistive layer at t = 0 is

equal to the field of a charge @ that is moving with a velocity v = 1/2¢9 R §way from the layer along the

z—axis. As an example for a surface resistivity of R = 1 M£}/square the velocity is 5.6 cm/ps.
The time dependent surface charge density on the resistive surface is given by

a o
q(r,t) = &0 %lz:ﬂ — €0 % |2=0 (112)
which evaluates to 0 ;
v
=2 113
q(rt) = 5 GRS (113)

The total charge on the resistive surface Qo = fnoo 2rmq(r,t)dr is equal to @ at any time. The peak and
the FWHM of the charge density are given by

Q 1
2 v2t2

The charge is therefore ’diffusing’ with a velocity v, and does not assume a gaussian shape as expected
from a diffusion effect but has 1/r° tails for large values of 7. The radial current I(r) at distance r are
given by

FWHM = 2(4*% —1)Y/2 ~ 1.530t (114)

Qmaz =

2rm 2rm O¢y Qur?
I =gy = TP, QU 115
(r) R (r) R or -0 (r2 + v2£2)3/2 (115)
It is easily verified that the rate of change of the total charge inside a radius r ie. dQ,(t)/dt =

d/dt [; 2r'mq(r’,t),dr’ is equal the the current I(r).

A point charge Q is placed on
an infinitely extended resistive
layer with surface resistivity of
R Ohms/square at t=0.

What is the charge distribution
at time t>0 ?

Note that this is not governed
by any diffusion equation.

The solution is far from a
Gaussian.

The timescale is governed by
the velocity v=1/(2¢,R)
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Resistive layer grounded on a rectangle

Next we assume a rectangular grounded boundar
() at position g,y at ¢ = 0 as indicated in Fig. 14¢

),
y=b =

Cl"ﬂ(t). (Xg: Ya)
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Figure 14: a) A point charge placed on a resistive layer tha
resistive layer that is grounded on at # = 0 and = a but in:

expression Eq. 42. Assuming the currents pointing to the outside of the boundary, the currents flowing

through the 4 boundaries are
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(120)

(121)

(122)

(123)

(124)

(125)

In case we want to know the total charge flowing through the grounded sides we have to integrate the

above expressions from ¢ = 0 to oc which results in the same expressions and just e #m®?

replaced by

1/(kymv). These measured currents can be used to find the position of the charge, a principle that is
applied in the MicroCat detector. As an example, Fig. 15 shows the correction map that has to be

applied in case one just uses linear interpolation of the measured charges.

A point charge Q is placed on a
resistive layer with surface
resistivity of R Ohms/square
that is grounded on 4 edges

What are the currents induced
on these grounded edges for
time t>0 ?

y/a
1.0

E 1 | 1 1
R

0.6+

04+

» for the case where the position of the charge is determined by linear |
boundaries of the geometry in Fig. 14a.
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Resistive layer grounded on two sides and i

y=b

X=a
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Figure 16: Currents for the geometry of Fig. 14b for zgp = a/4.

5.4. Resistive layer grounded of >a and insulated at £b.

In case the resistive layer is grounded at # = 0,z = a and insulated at y = 0,y = b, as shown in Fig.
14, the currents are only flowing into the grounded elements at = 0 and x = a. We use Eq. 43 and
with some effort the summation can be achieved and evaluates to

b : T
1 01 Q sin(m %)
Ii:(t) = —= ——|p—0dy = — — a 126
=) =—g fD bz =0 =~ 17 cosh( %) — cos(mZ2) (126)
b : T
1 01 Q sin(m%2)
(1) = = ———|p=ady = — —= 2 127
2(t) R /0 Oz | y 7T cosh(%) + cos(m ™) (127)
with 7' = 2e2oft — 2 For large times both expressions tend to
2 z
I, (t) = I, (t) =~ —g cos (ﬂ;ﬂ) e t/T (128)

Fig. 16 shows the two currents for a charge deposit at position zg = a/4 together with the asymptotic
expression from Eq. 128. The total charge that is flowing through the grounded ends is given by

a— Iy

q = Am I.(t)dt = Q

g = [C Lo (t)dt = Q2 (129)

so we learn that the charges are just shared in proportion to the distance from the grounded boundary,

equal to the resistive charge division.

Possibility of position measurement in RPC and Micromegas

Werner Riegler, CERN

A point charge Q is placed on
a resistive layer with surface
resistivity of R Ohms/square
that is grounded on 2 edges
and insulated on the other
two.

What are the currents induced
on these grounded edges for
time t>0 ?

The currents are monotonic.

Both of the currents approach
exponential shape with a time
constant T.

The measured total charges
satisfy the simple resistive

charge division formulas.
14



Uniform currents on resistive layers

© (@.b)

Uniform illumination of the resistive

layers results in ‘chargeup’ and related
potentials.

(ab) @ @b)

-——— - R ————

.(0,0) (a0) x -(0,0) (a0) X

Figure 25: A uniform current 'impressed’ on the resistive layer will result in a potential distribution that depends strongly
on the boundary conditions. The 4 geometries shown in this figure are discussed.

In this section we want to discuss the potentials that are created on thin resistive layers for uniform
charge deposition. In detectors like RPCs and Resistive Micromegas such resistive layers are used for
application of the high voltage and for spark protection. The resistivity must be chosen small enough to
ensure that potentials that are established on these layers due to charge-up are not influencing the applied
electric fields responsible for the proper detector operation. If such detectors are in an environment of
uniform particle irradiation the situation can be formulated by placing a uniform ‘externally impressed’
current per unit area ig [A/cm?] on the resistive layer. For illustration we use the example of a resistive
layer an absence of any grounded planes from Section First we want to investigate the geometry
shown in Fig. ) where the layer is grounded on a circle at r = ¢. The charge dg placed on an
infinitesimal area at position ry, ¢ after time ¢ is given by dg(t) = igrodrodgot, or in the Laplace domain
dq(s) = igrodrodgn/s®>. We therefore have to replace Q/s in Eq. by ¢(s), which results in

3.0 RT‘od?"odqf?o —k
——F—— €
s k+ 25qRs

E._g RT‘D d’-‘"gd(}')o kz

2 160
s k+ 2:0Rs (160)

filk,z,s) = falk,z,8) =

Since we want to know the steady situation for long times ie. for t =+ oo we f(k,z,t = o0) =
limg_,0 8f(k, 2z, s) and have

Rig'f‘g d’.l"gd{f)g ekz
k

_ Rig?‘gd?‘gd{f}g e k=

k) = falk ) = =20 = (161)
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Jo (Gour /)
r,z) = ¢3(r,—z) = 2¢*Ri 7970”'/3 162
u(r5) = oalr =) =2 i Y R (162

For z = 0 i.e. on the surface of the resistive layer, the expression can be summed and we have

¢1(r,z=0) = ¢a(r,z =0) = imo(c? —r?) (163)

This expression can also be derived in an elementary way: the total current on a disc of radius r i.e.
r?mig, is equal to the total radial current flowing at radius r i.e. 2r?rE /R. This defines the radial field
inside the layer to F, = Rigr/2. With the boundary condition ¢(c) fo r)dr = 0 we find back the
above expression. The maximum potential is therefore in the centre of the dlSC and is equal to
2 B
o(r=0) =2 Zf 0 - ;—WRIM ~ 0.08 Rl (164)
To find the potentials in the rectangular geometry of Fig. we again have fi, fo from Eq. [161]we just
have to replace rodrodgg by drgdyy and perform the integration foa dxg ﬁ:? dyy of Eq. , which results in

(—=1)™] sin(Irz/a) sin(mmy/b)

1 = [1-(-1
$1(z,y,2) = ¢a(z,y, —z) = abRig —422 (=10 - Brb/a + milalb efm?  (165)

The expression cannot be written in closed form but converges quickly, so numerical evaluation is straight
forward. The peak of the potential can be found by setting d¢;/dz = 0,d¢,/dy = 0 and is found at
r = a/2,y = b/2, which is also evident by the symmetry of the geometry. The maximum potentia
the resistive layer is then

_l)i—l—m

128 (
R 2p?
e ;;1 T 22— 1)3(2m—1) + a2(2m —

Omaz = ¢(a/2,b/2,2 =0) =
For a square geometry (b = a) the sum evaluates to &~ 0.59 so the peak voltage i
Omaz ~ 0.074Riga® = 0.074 RI;0;

We see that the value is only less than 10 % different from the peak voltage for the circular boundary in

Eq.

For uniform illumination of the geometry Fig. that is grounded at z = 0,a and insulated at y =0,b
we use expression Eq. and proceed as before and find

o R 1 .
61(a,2) = da(x,—2) = 2Riga? Y L= TV ZTL/D) e
=1

The potential is is independent of y and for z = 0 the sum can be written inclosed for

é1(z,z2=10) = —Rzg(az — 22 Pmar = %agRiD (169)

a) iu
=c
r
[m]
Y .
b (0b)~ L {ab)
15
- RO,
T @0) x
(a.b)

sl

-(0.0) (a0 x
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Infinitely extended resistive layer with parallel ground plane

Assuming an infinitely extended geometry, the time dependent charge density evaluates to ayb) y 7 [
WY / b
1 [ r gy b b 4
g(r.t) = % 5£ ffJu(ﬁE) exp {*n(l 76_25)?] ds  T= o= 2beg R (134)

It can be verified that Jrum 2rmg(r,t)dr = Q at any time. For long times i.e. large values of t/T" we can
approximate the exponent of the above expression by

k(1 —e-)E o 2t
k(l—e )T ~ -2k T (135) a)
and the integral evaluates to
_Q 1 —ghm Figure 18: a) An infinitely extended resistive layer in presenc
art) = bem 8¢/T © . s radglilus r= c.) Y Y 7
A point charge Q is placed on an infinitely
In analogy to the one dimensional transmission line, the discussed geometry is often assumed to be extended resistive layer with surface reSIStIVIty of
defined by the two dimensional diffusion equation R Ohms/square and a parallel ground plane at t=0.
b0, (Fa Fa) ,_ _=
at#h(axg+ayg) h=1/RC C=73 (137)

What is the charge distribution at time t>0 ?

where C' is the capacitance per unit area between the resistive layer and the grounded plate. The solution
of this equation for a point charge @ put at r = 0,¢ = 0 evaluates exactly to the above Gaussian expression
In Fig. 19 the charge distribution from Eq. 134 is compared to the above Gaussian as well as Eq. 113
for the geometry without a ground plane. Although the order of magnitude is similar, the solution of This process isin princi p|e NOT governed by the
the diffusion equation does not work very well. The reason for the discrepancy can be understood when diffusion equ ation
investigating how Eq. 135 is derived: the current j(z,y,t) flowing inside the resistive layer is related to '
the electric field F(z, y.t) in the resistive layer by 7 = E/R. The relation between the current and the
charge density g(z,y,t) is Vj = —8g/8t. With E = —V¢ we then get . o . . .

b0 1 (8% &% In practice it is governed by the diffusion equation

% _E(@J“@) (138) for long times.

If we set ¢ = C'¢ we have the diffusion equation Eq. 135. This relation between voltage and charge(Q =
CU) is however only a good approximation if the charge distribution does not have a significant gradient q(rt=T)/(Q/b2m)
over distances of the order of b. For small times when the charge distribution is very peaked around zero 0.6

this is certainly not a good approximation. It means that for long times when the distribution if very

broad when compared to the distance b the two solutions should approach each other. Indeed this can be s : : —
seen if we calculate the current that is induced on the grounded plate, which we do next. The presence 85 Ch arg € d I Strl b Utl on at t_T
of the charge on the resistive layer induces a charge on the grounded metal plane. If we assume that the
metal plane is segmented into strips, as shown in Fig. 20b, we can calculate the induced charge through
the electric field on the surface of the plane. Assuming a strip centred at x = z, with a width of w and
infinite extension in y direction, we find the induced charge to

r/b




Infinitely extended resistive layer with parallel ground plane

What are the charges induced
metallic readout electrodes by
this charge distribution?

z
Tptuw/2  poo O
Qinalt) =f f —E[]?]z:—bdydx (139) q(x,y,t) Y b
Tp—wf2 Joo Z
which evaluates to
_2Q [T ey sin(e ki k(12 b
Qinalt) = - /‘; ;Lob(ﬁ. ) ]bm(ﬁzbjexp{ k—r(l—e )T} dk (140)

The solution of the diffusion equation assumes the relation of a capacitor where the ground plate should
just carry the charge density —g(z,y, t), so the total charge on the strip is

Tp+wf2  poo 2 o 2Ep _
alt) = f Con fx ol )dzdy = < [erf(r‘” ,—;;;) —erf(r T;"Iﬂ (141)

Both expression are shown in Fig. 19b. Although there are significant differences at small times the
curves approach each other for longer times when the charge distribution becomes broad. Indeed, if take
Eq. 139 we see that for large values of £/T" only small values of x contribute to the integral, so if we
expand the exponent as

ice of a grounded layer. b) The same geometry grounded at a

ot I Qind()/Q
—k—k(l—e “)1—,@—25 T (142) 010+ ; . — ; — "
the integral evaluates precisely to expression Eq. 140. Gau sSsian ap p roximation
0.08

broad. The solutions still do not represent a detector signal due to the unphysical assumption that the
charge is created 'out of nowhere’ at ¢ = 0. The correct signal on a strip due to a pair of charges +=@Q
moving in a detector will be discussed in Section

0.06 |

oal Exact solution

0.02

“"mn 2 4 6 8 10 12

T
ld'r
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Ramo’ s Theorem

VO. ’
=

2(c Ey(x)

L > il

_ Veo |

T1(0)

q
N

QB(Q

The current induced on a grounded electrode by a charge q moving
along a trajectory x,(t) can be calculated the following way:

m One removes the charge, sets the electrode in question to voltage V, and
grounds all other electrodes.

m This defines an electric field E(x), the so called weighting field of the electrode.

mThe induced current is the given by 1,(t) = -q/Vy E;(X(t)) d/dt x,(t)

VCI12004 Werner Riegler, CERN 19



LHCH .
B8 Extensions of the Theorem

An extension of the theorem, where the electrodes are connected with arbitrary
discrete impedance elements, has been given by Gatti et al., NIMA 193 (1982) 651,
details in Blum, Riegler, Rolandi, Particle Detection with Drift Chambers, Springer

However this still doesn’t include the scenario where a conductive medium is
present in between the electrodes, as for example in Resistive Plate Chambers or

undepleted Silicon Detectors.

VCI12004 Werner Riegler, CERN 20



ek Formulation of the Problem

At t=0, a pair of charges +q,-q is produced at
some position in between the electrodes.

From there they move along trajectories xy(t)
and x,(t).

D

What are the voltages induced on electrodes
that are embedded in a medium with position
and frequency dependent permittivity and
conductivity, and that are connected with
arbitrary discrete elements ?

VCI2004 Werner Riegler, CERN 21



LHCb

Theorem (1,4) @V

A

Remove the charges and the discrete elements and calculate the weighting fields of all
electrodes by putting a voltage V,5(t) on the electrode in question and grounding all others.

In the Laplace domain this corresponds to a constant voltage V, on the electrode.

- -

© o

Calculate the (time dependent) weighting fields of all electrodes

Veers(Z )V 6(8,5) =0 6n(&,9)|:_ 7 = Vobum
En(Z,5) = —Von(Z,s)  En(Z,t) = L7 |En(Z,9)]

VCI2004 Werner Riegler, CERN 22



Theorem (2,4)

Calculate induced currents in case the electrodes are grounded

t ., T
In(f) — Viﬂ fﬂ En [#o(), t — ] Zo()dt’

q (P2 (4 (v N2 eyl
—— | En|x1(t),t—1t'|xq1(t)dt
oo o En[E @t =] 81
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LHCb

Theorem (3,4)

Calculate the admittance matrix and equivalent impedance elements from the
weighting fields.

vrm() = [ 2o (O En(@ )dA tum(s) = Umn(s)

1 1
Z‘ﬂ-ﬂ —
() Z,ﬁ:l Ynm(s)

Z]_ ]_(S) i2ext(s)
1lext(s)

Z12(s) v2(s)

vi(s) — ﬁ
722(s)
2239 | S

Z13(s) [ N

A 4

|

vi(s)

13ext{s)
Z33(s)
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LHCb

Theorem (4,4)

Add the impedance elements to the original circuit and put the calculated currents
On the nodes 1,2,3. This gives the induced voltages.

12(0)

722
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This theorem is applies to situations where the
influence of the moving charges on the system is
through their electric field by j=cE and the movement
of the charges is not affected.

D
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RPC

Amplifier

2mm Aluminum

3mm Glass

HV
300um Gas Gap

T~ €y/ o = 100msec

VCI2004

Examples

Silicon Detector

Depleted Zone

Vdep
1~ €y/oc =1ns
heavily irradiated silicon has larger resistivity

that can give time constants of a few hundreds of ns,

Werner Riegler, CERN 27



LHCD

#
Weighting Field of Electrode 1

electrode? T

El - |d3

A
!

Vo

VCI2004

Example, Weighting Fields (1,4)

Elz(s)

Werner Riegler, CERN

£alo — Vosr S % z>0
gady + epdy (dy +dzer) s+ %

&'ng _ Vg 5 2 <0
gady +5pdy (d1 +dosr) s+ %2
= ErEQ = £0 (dl + dz&'r)

o o do
EZZ(S) - _Elz(s)
28



LHCD

At t=0 a pair of charges q, -q is created at z=d,.

. . . . ro(t) =
One charge is moving with velocity v to z=0 —
Until it hits the resistive layer at T=d,/v.
d zg(t) =
Tum
- ! —
clectrode? Q i J Elz(-r;t) —
A 42
J dl
electrodel
I1(t) =
11(t)
VCI12004 Werner Riegler, CERN

Example, Induced Currents (2,4)

dg—vt
0
—
0
Vo |5 271 _%
di+erda )+ T ©

t
r dj )
qul—ii‘rdz [1 + dzEr(l € PE)]

1 d

T _t
Hle2—1)e ™

VI Ferds do

t<T
t>T

t< T
t>T

z>=0

t<T

t>T
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’? 9 |
] | =z 3B
- | -
Tum :-j 30 |
clectrode? Q I -
" o 2
J dl 20 |
electrodel
11(t) 15
) 10 -
In case of high resistivity (t>>T, RPCs, 5 |
irradiated silicon) the layer is an insulator.
%0 02 04 06 08 1 12 14 16 18 2

In case of very low resistivity (t <<T, silicon) the
layer acts like a metal plate and the scenario

Is equal to a parallel plate geometry with plate
separation d,.

t/T
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LHCD

BN Example, Admittance Matrix (3,4) S

electrode2
&= &g d2 0
dl
| eemres .
electrodel
Azgs(o + egs) 1 -1
Ynm(s) = 1 1
odz + (dl1 + d2)=gs R —— C2
Z11(s) = oo
Zo(8) = oo
1 R/sC
Zia(s) = = 4 B/
Ci  R+1/s5C
A A 1dy
C1 = — Cr = it R— -2
L = 504, 2= Ere0y) o A
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Example, Voltage (4,4)

= ﬁ Rin
i Vy(t) o= 1y(t)
— C1

R - C2
HV

Vi(t) ¢=— L(t)

VCI12004 Werner Riegler, CERN
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Charge spread in e.g. a Micromega with bulk or surface resistivity

Micromega Mesh

Avalanche region

Bulk

/

/

& = i
E1- o i—
/-!—,'V"' /
/. v=0 W Wy yd
a) x=y=r=0
V=0 ;
>
Z
q ED E w
—> 8o
V=0 Wy
e) x=y=r=0
V=0 |
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° 0.1 Q
€,,0 v,
W,
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V.
P
V=0 Wy Wy
b) x=y=r=0
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“R E[] EZW
& LV
V=0 Wi
d) x=y=r=0
V=0 i
i
R_® o"I q
€ v
W,
f) X=y=r=D
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Figure 27: Weighting field for a geometry with a resistive layer having a bulk resistivity of p = 1/¢[(cm] (left) and a
geometry with a thin resistive layer of value R [(}/square] (right).

t t
I(t) = —if E'w[fl(t’}?t—t’}El(t’]dt’—I—%f E(Ta(t), t — t)Fo(t)dt'
] w JO

Vu
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Figure 28: Uniform charge movement from z = 0 to z = g, with e, = 1, wx = 4g,b = g,70 = 10T for a)z = D and b) = = 4g.
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Figure 29: Uniform charge movement from z = 0 to » = g, with &r = 1wz = dg,b= g,70 =T for a)z = 0 and b) x = 4g.
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Figure 30: Uniform charge movement from z = 0 to z = g, with er = 1,wz = 4g,b = g, 70 = 0.1T for a)z = 0 and b)
r=4g.

Charge spread in e.g. a Micromega

with bulk resistivity

0 = ED/O' = &pp.

T =g/v

————  Z€ro Resistivity

—-====: INfinite Resistivity (insulator)

All signals are unipolar since the charge
that compensates Q sitting on the surface
is flowing from all the strips.
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Charge spread in e.g. a Micromega
with surface resistivity

Twigm Ty T/QT
X .

Figure 31: e, = 1, w, = 4g,b=g,To = 10T for » =0, =4g,2 = 8g

Twiem Ty WD T g / v
o o
o

—
e T - 1p T T T s T T
______ Zero Resistivity

e b re o meme—— Infinite Resistivity (insulator)

1gure 32 g =1, wy =4dg, 0 =g,1lp = or r =U,r=4g,r =089
QT r:nf(w'n 1::)1(01‘:
o e

OO OV OO 7/ === " O P SO == All signals are bipolar since the charge

that compensates Q sitting on the surface
is not flowing from the strips.

Figure 33: e, = L,wy = 4g9,b=9,To =0.1T for 2 =0,z = 49,2 = 8¢

Twm Te/QT) TeyQT
. 3t

Figure 34: g, = 1w, =4g,b = g,Ty = 0.01T for x = 0,z = 49,2 = 8g
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Figure 35: g, = 1,w, =4g9,b=g,Ty = 0.001T for x =0,z = dg, 2 =8g




Summary

An extension of Ramo’s theorem for detectors containing
elements of finite resistivity has been presented.

Using the quasistatic approximation of Maxwell’s equations the
time dependent weighting fields can be derived from electrostatic
solutions.
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