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With the introduction of resistive elements in the detector volumes, like for Restistive Plate 
Chambers or resistive MICROMEGAs, the signal induced on the readout electrodes will not only 
be determined by the movement of the primary charges but also by the movement of charges 
inside these resistive elements. This report will present an extension of Ramo's theorem to include 
these effects, that might have an application on solid state detectors where resistive layers are 
used either to evacuate charge or to introduce discharge protection.
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2mm Bakelite, ρ≈1010 Ωcm 3mm glass, ρ≈ 2x1012 Ωcm 0.4mm glass, ρ≈1013 Ωcm

Silicon Detectors

depletion layer 

Undepleted layer ρ≈ 5x103Ωcm

Resistive Plate Chambers

Detectors with resistive elements

Resistive MICROMEGAS, TGCs

Thin layers of ≈100kΩ/☐ to 10MΩ/☐ for discharge protection and to apply HV.

Thin layers of ≈100kΩ/☐ to 10MΩ/☐ to apply HV.
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Quasistatic Approximation of Maxwell’s Equations

Assuming ‘slow’
changes of the fields 
we can neglect 
Faraday’s induction 
law …

… and we find back 
the Poisson equation 
with an effective 
permittivity in the 
Laplace domain. 

j = σ E

σ=1/ρ

σ … conductivity

ρ … volume resistivity



Werner Riegler, CERN 6

Quasistatic Approximation
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Examples
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Single Gap RPC
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Single Gap RPC
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Single Gap RPC, increasing rate capability by a surface R
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Infinitely extended thin resistive layer



12

Infinitely extended resistive layer

A point charge Q is placed on 
an infinitely extended resistive 
layer with surface resistivity of 
R Ohms/square at t=0.

What is the charge distribution 
at time t>0 ?

Note that this is not governed 
by any diffusion equation.

The solution is far from a 
Gaussian.

The timescale is governed by 
the velocity v=1/(2ε0R)
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Resistive layer grounded on a rectangle

A point charge Q is placed on a 
resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 4 edges

What are the currents induced 
on these grounded edges for 
time t>0 ?
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Resistive layer grounded on two sides and insulated on the other

A point charge Q is placed on 
a resistive layer with surface 
resistivity of R Ohms/square 
that is grounded on 2 edges 
and insulated on the other 
two.

What are the currents induced 
on these grounded edges for 
time t>0 ?

The currents are monotonic.

Both of the currents approach 
exponential shape with a time 
constant T.

The measured total charges 
satisfy the simple resistive 
charge division formulas. 

Possibility of position measurement in RPC and Micromegas
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Uniform currents on resistive layers

Uniform illumination of the resistive 
layers results in ‘chargeup’ and related 
potentials.
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Infinitely extended resistive layer with parallel ground plane

A point charge Q is placed on an infinitely 
extended resistive layer with surface resistivity of 
R Ohms/square and a parallel ground plane at t=0.

What is the charge distribution at time t>0 ?

This process is in principle NOT governed by the 
diffusion equation.

In practice it is governed by the diffusion equation 
for long times.

Charge distribution at t=T
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Infinitely extended resistive layer with parallel ground plane

What are the charges induced 
metallic readout electrodes by 
this charge distribution?

Gaussian approximation

Exact solution
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Ramo’s Theorem

 One removes the charge, sets the electrode in question to voltage V0 and 
grounds all other electrodes.  

 This defines an electric field E(x), the so called weighting field of the electrode.

The induced current is the given by  I1(t) = -q/V0 E1(x0(t)) d/dt x0(t)

The current induced on a grounded electrode by a charge q moving 
along a trajectory x0(t) can be calculated the following way: 



VCI2004 Werner Riegler, CERN 20

An extension of the theorem, where the electrodes are connected with arbitrary 
discrete impedance elements, has been given by Gatti et al., NIMA 193 (1982) 651, 
details in Blum, Riegler, Rolandi, Particle Detection with Drift Chambers, Springer

Extensions of the Theorem

However this still doesn’t include the scenario where a conductive medium is 
present in between the electrodes, as for example in Resistive Plate Chambers or 
undepleted Silicon Detectors.
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Formulation of the Problem

At t=0, a pair of charges +q,-q is produced at 
some position in between the electrodes. 

From there they move along trajectories x0(t)
and x1(t). 

What are the voltages induced on electrodes 
that are embedded in a medium with position 
and frequency dependent  permittivity and 
conductivity, and that are connected with 
arbitrary discrete elements ?
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Theorem (1,4)

Calculate the (time dependent) weighting fields of all electrodes

Remove the charges and the discrete elements and calculate the weighting fields of all 

electrodes  by putting a voltage V0(t) on the electrode in question and grounding all others.

In the Laplace domain this corresponds to a constant voltage V0 on the electrode. 
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Theorem (2,4)

Calculate induced currents in case the electrodes are grounded
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Theorem (3,4)

Calculate the admittance matrix and equivalent impedance elements from the 

weighting fields.
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Theorem (4,4)

Add the impedance elements to the original circuit and put the calculated currents 

On the nodes 1,2,3. This gives the induced voltages.



Werner Riegler, CERN 26

This theorem is applies to situations where the 
influence of the moving charges on the system is 
through their electric field by j=σE and the movement 
of the charges is not affected. 
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Examples

r6  =1/  1012cm

2mm Aluminum

3mm Glass

300m Gas Gap

Amplifier

Rin

HV

RPC Silicon Detector

Vdep

Undepleted Zone,  =1/  5x103cm

Depleted Zone

Rin

  0 /   100msec   0 /   1ns

heavily irradiated silicon has larger resistivity 

that can give time constants of a few hundreds of ns, 
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Example, Weighting Fields (1,4)

Weighting Field of Electrode 1

Weighting Field of Electrode 2

a = r 0 + /s

b = 0

a = r 0 + /s

b = 0
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Example, Induced Currents (2,4)

At t=0 a pair of charges q, -q is created at z=d2. 

One charge is moving with velocity v to z=0

Until it hits the resistive layer at T=d2/v.
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Example, Induced Currents (2,4)

In case of high resistivity (>>T, RPCs, 

irradiated silicon)  the layer is an insulator.

In case of very low resistivity ( <<T, silicon) the 

layer acts like a metal plate and the scenario 

is equal to a parallel plate geometry with plate 

separation d2. 
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Example, Admittance Matrix (3,4)

a = r 0 + /s

b = 0

electrode1

electrode2

C2

C1

R
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Example, Voltage (4,4)

V2(t) I2(t)

V1(t) I1(t)

Rin

C2

C1

R
HV

Rin
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Charge spread in e.g. a Micromega with bulk or surface resistivity

Micromega Mesh

Avalanche region

Bulk
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ε0 

ε1, σ

Q -Qv

I(t) I(t)

Zero Resistivity

Infinite Resistivity (insulator)

g

All signals are unipolar since the charge 
that compensates Q sitting on the surface 
is flowing from all the strips. 

Charge spread in e.g. a Micromega 
with bulk resistivity
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ε0 

ε1 

Q -Qv

I(t) I(t)

R g

Zero Resistivity

Infinite Resistivity (insulator)

All signals are bipolar since the charge 
that compensates Q sitting on the surface 
is not flowing from the strips.

Charge spread in e.g. a Micromega 
with surface resistivity
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Summary

An extension of Ramo’s theorem for detectors containing 
elements of finite resistivity has been presented.

Using the quasistatic approximation of Maxwell’s equations the 
time dependent weighting fields can be derived from electrostatic 
solutions.


