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Silicon sensors with high precision timing are used in present experiments, like the
NAG2 Gigatracker, or planned to be used for the LHC Phasell upgrade, like the LGAD
development. Trackers with 10um position and 10ps time resolution are quoted as a
long term goal for these developments. This report will discuss analytic expressions
for the time resolution of silicon sensors, with focus on the key contributions to the
time resolution, namely Landau fluctuations, noise and variations of the weighting
field. The impact of amplifier bandwidth is discussed as well.
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ABSTRACT

The time response function of RPCs is derived. First, primary electron distributions in the RPC gas gap
are discussed. Then the exact expression for the fluctuations of an avalanche starting with a fixed
number of primary electrons is derived, using Legler's model of avalanche multiplication in
electronegative gases. By means of the Z-Transform formalism, the primary electron distributions and
avalanche fluctuations are then combined and an analytic expression for the RPC time response function
is derived. The solution is further used to discuss signal threshold and attachment effects. Finally, the
time response function is evaluated for several primary ionization models.

@ 2009 Elsevier B.V. All rights reserved.
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Time resolution In Resistive Plate Chambers

Before proceeding to the main body of the paper we shall state
the principle result: the time response function for an RPC using a
gas with drift-velocity v, Townsend coefficient «, attachment
coefficient #, assuming (1) an average number of ny efficient
clusters which fluctuate according to a Poisson distribution (2) a
cluster size distribution f(m) with Z-Transform F(z) having a
radius of convergence r (3) avalanche multiplication according to
Legler's avalanche model and (4) a threshold of n electrons, is
given by

ef@ _1 (1 -k>?nS
2mi [ emo — ewF(1/k) (1 — kz)?

pn,t) =

1-k1-2 g
Tz © |% (1)

»x eXp [-St —n

with S = (« — n)v and k = n/o. The integration is over a circle with
radiusrg<r<1/k. Writing z = rexp(i¢) and dz = irexp(i¢) d¢ and
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- Interested in understanding how the basic contributions to the time
resolution differ between RPCs and silicon sensors
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Time resolution of silicon pixel sensors

Time resolution of silicon pixel sensors

W. Riegler, G. Aglieri Rinella
CERN EP, CH-1211 Geneve 25

Abstract

We derive expressions for the time resolution of silicon detectors, using the Landau theory as a
minimum model for describing the charge deposit of high energy particles. First we use the center of
gravity time of the induced signal and derive analytic expressions for the three components contributing
to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape due
to of the weighting field variations. Then we derive expressions for the time resolution using leading edge
discrimination of the signal for various shaping times.

Keywords: silicon sensors, time resolution, weighting field
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Energy deposit in silicon

A high energy particle passing a silicon sensor will experience a number of primary interactions with
the material, with A being the average distance between these primary interactions. For gy > 3 we
have A & 0.25 pm in silicon [6]. The electrons created in these primary interactions will typically lose
their energy over very small distances and create a localised cluster of electron-hole pairs. We call
the probability p.(n) for creating n e-h pairs in a primary interaction the ’cluster-size distribution’.

p(n,Az)dn=(1-— % d(n)dn + %pdu{n]dn

N
P(s.d) = £lp(n, )] = £, 22" = (14 55 (Pauls) - )

p(n,d) = L1 [ede(Pczu(s)—l)]

The cluster size distribution pe.(n) is typically calculated using some form of the the PAT model [7].
For this report we use Landau’s approach to assume an 1 /E2 distribution for the energy transfer in
accordance with Rutherford scattering on free electrons and a lower cutoff energy € chosen such that the
average energy loss reproduces the Bethe-Bloch theory. The resulting cluster size distribution for a MIP
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Figure 1: The silicon sensor is divided into slices of thickness Az, The electrons and holes produced in one slice are assumed
to move to the boundary of the sensor at constant velocity, which is correct in the limit of negligible depletion voltage.
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Energy deposit in silicon

2.50d d

ﬁﬂFWHM _ 4.02
nyp 0.2+ logd/\

The most probable number of e-h pairs for a MIP in 50, 100, 200, 300 um of silicon evaluate to =
2750, 6190, 13770, 21870, which is within 10% of the values shown in [8]. The relative width Anpw gar/marp
is 0.73, 0.65, 0.58, 0.55 for these values of thickness, which is 20-50% higher than the numbers from the
PAI model and the actual values. It is well known that the Landau distribution overestimates the charge
deposit fluctuations, so using this model we should have a slightly pessimistic estimate of the time reso-
lution.
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Timing of a detector signal, c.0.g. time

3. Center of gravity time of a signal

First we assume the measured time to be defined by the center of gravity (c.o.g.) time of the induced
detector current signal i(t). Assuming the Laplace Transform of the signal I(s) = L[i(t)], the c.o.g. time
Teur Of the signal is given by

o Jo ti(t)dt [T ti(t)dt _I'(0) )
cur — fUDC. z(t)dt - q — I(U)

where q = fﬂoo i(t)dt is the total signal charge. We now consider the signal i(¢) to be processed by an
amplifier having a delta response f(t) with Laplace Transform F'(s), so the amplifier output signal v(t)
is given by

v(t) = /D f(t —t)i(t)dt' Vi(s) =F(s)I(s) (8)
The c.o.g. time of the output signal is then given by
V'(s) F'(0)I(0) + F(0)I'(0) F'(0) I'(0)

T, = — lim = — = — = Tamp + Teur (9)

s—0 V(s) F(0)I(0) F(0) I(0)

The represents the sum of the c.o.g. time of the delta response and the one from the current signal, and
since the shape of the delta response does not vary in time, the c.o.g. time variation of the of the amplifier
output signal is equal to the c.o.g. time variation of the original input signal and has no dependence on
the amplifier characteristics.
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Timing of a detector signal, c.0.g. time

as shown in the following. In case the duration T of the signal i(t) is short compared to the 'peaking
time’ t, of the amplifier (i(t) =0 for t > T' < t,,) we can approximate Eq. 8 for t > T according to

T T
oft) = /ﬂ £t = O)i(t)dt ~ ]u () — F(0)F] i(t")de

Ji tit")dt’
g

= q [f(t) — f'(t) = q[f(t) = f'(t)Teur]

q f(t _ Tcur) (10)

22

The amplifier output is simply equal to the amplifier delta response shifted by the c.o.g. time of the
current signal and scaled by the total charge of the signal. Since the shape of the amplifier output signal
is always equal to the amplifier delta response, we can determine the signal c.o.g. time either by the
threshold crossing time at a given fraction of the signal or by sampling the signal and fitting the known
signal shape to the samples.

> An amplifier with a peaking time larger than the duration of the detector
signal measures the c.0.g. time of the detector signal.

> This does not mean that the c.0.g. time gives the best possible time
resolution, but it allows the characterization of time resolution independently
of the amplifier and might still be of practical importance ...

Werner Riegler, CERN 9



C.o.g. time of a silicon detector signal

Vi v, For later use we remark that for the sum of two current signals i(t) = i1(¢) + i2(t) with c.o.g. times 7
—_— and 7 we have
A T . . fti(ﬁ)dt T fil(t)dt+T2fi2(t)dt _ T1q1 + T2¢2 (11)
) . . ~ [i@)dt — [a(t)dt+ [i(t)dt T g +ge
e 1
The c.o.g. time for the sum of N signals i,(t) is therefore given by
Ly (12)
T= N qr Tk
Dok=1k (=1

We assume a silicon sensor operated at large over-depletion i.e. at a voltage that is large compared to
the depletion voltage and the electric field can therefore be assumed to be constant throughout the sensor.
Consequently the velocities of electrons and holes are constant and the signal from a single electron or
single hole has a box shape. We assume a parallel plate geometry with one plate a z = 0 and one at
z = d, where a pair of charges +¢, —¢q is produced at position 2z and —¢ moves with velocity v; to the
electrode at z = 0 while ¢ moves with velocity v to the electrode at z = d. The weighting field of the
electrode at 2 = 0 is E,, = 1/d and the induced current is therefore
z, z=d

i(t) = _‘%19(2/@1 ) q%?e((d_ 2)/vg —t) (13)

with ©(t) being the Heaviside step function. We have [i(t)dt = —¢q and according to Eq. 7 the c.o.g.
time of this signal is then
1 [22 (d—2)?
_ - |z 14
4 2d |:'¢‘J'1 + Vo ( )

If nq1,na, ...,ny charges are produced at positions 21, 29, ..., 2y and are moving to the electrodes with vy
and v, the resulting c.o.g. time of the signal is

N

1 22 (d— zk)2:|

T(ni,n9,...,ny) = ———— E ng [—k + — (15)
2d (Zszl nk) k=1 ! v2
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C.o.g. time of a silicon detector signal

with 7 and 72 being the average and the second moment of 7. The average T is given by
o0 o0 [ =]
T = f ] f T(n1,n2, ...,nn)p(ni, Az)p(na, Az)..p(ny, Az) dny dna...dny
o Jo 0

N 2 Y
}V Z ng [Z—k + —(d ) ]
2d (3 h—1 M%) 121 U1 U2

T(ni,ne, ....,nN) =
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0 0
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C.o.g. time of a silicon detector signal

Up to this point the expression for by is still completely general for any kind of cluster size distributions
Perw(n) and resulting p(n, d). Using the Landau theory we use p.;,(n) from Eq. 4 and have

clu = 2.50 2.50 2.50
f 13 pe (m)d ny = / —dn; = ~ (35)
o (n1+n)? 259 (M1 +n) n + 2.50 n
(for n > 1) and with Eq. 5 we get
Az [ p(n,d) Az [ L(z+~v—1—logd/\) Az 1
by 2280 | dn = /U 2 G AT T ogayy 20

The last expression is an approximation of better than 1% in the interval 4 < logd/A < 10, which
corresponds to a range of the silicon sensor thickness of 15 < d < 5000 ym for a value of A = 0.25 pm.
For the standard deviation we therefore finally have

d 4 7 4
Ar \/ — - (37)

1+ 1.155 logd/X || 180v{  180viva ~ 18003

This is the time resolution of s silicon sensor when measuring the c.o.g. time.

At constant electric field i.e. at constant drift velocity v; and vy, the time resolution scales with d, which
represents the trivial fact that the duration of the signal and therefore also A, scales with d. For a given
voltage V', the electric fields in the thinner sensors, and therefore the velocities of electrons and holes are
of course larger, so the time resolution improves significantly beyond the 1/d scaling for thin sensors.

If we associate vy and vy with the electron and hole velocity, Ty = d/v, and T5 = d/v5 are the total drift
times of electrons and holes, and 175 = d/m is the total drift time assuming the geometric mean of
the electron and hole velocity. The expression 1/\/1 + 1.155 log d/ A varies only from 0.37 to 0.33 for d
from 50 pm to 300 pm for A = 0.25 pum, which means that the effect of the Landau fluctuations does not
vary significantly in this range of sensor thickness. So by approximating it with the value of 0.35 we have

A i[}\/Tz—lT’5T12—I—T2 50 pm < d < 300 pm (38)



Driftvelocities of electrons and holes

_ pe B _ pn E
UE(E) - ,SE lfﬁe Uh(E) - ,Bh 1{16.'1, (39)
[H(’;‘;—E) ] [1+(’*21—E) ]
aat Vaat
where we chose p1, = 1417 cm?/Vs, pp = 471 ecm?/Vs, 8. = 1.109, 5, = 1.213 and v¢,; = 1.07 x 107 cm/s

and v, = 0.837 x 107 cm/s at 300 K in accordance with the default models in Sentaurus Device [9]. The

resulting driftvelocity together with the time that the electrons and holes need to traverse the sensor
(assuming Ve, = 0) are given in Fig. 2. For a 50 pm sensor at 250V the electrons take 0.5ns and the
holes take 0.7ns to traverse the sensor, so the total signal duration is < 0.7 ns.

The values for the time resolution according to Eq. 37 are given in Fig. 3. For an applied voltage of
250V the values are 305, 152, 52, 21 ps for 300, 200, 100, 50 pm sensors.

Velocity em/s| Tims)
—_— L mol bt S — 300um Electrons
53108 = N -
) - m&éﬁ . --- 300um Holes
/J L i
1x 108 ! 58 — 200um Flectrons
5% 10 —— Electrons B T ——- 200um Holes
A A 8 = s L= e E——
A —— Holes [ —— —— 100um Electrons
1x 108 o T 16 -
= 5 === === 100um Holes
Fx10% s 0.5 —
- —— 350um Electrens
10— 02 ~—- 50um Holes
EViem| v
a_} 10 100 1000 10¢ 10° b) E) 100 150 200 250 300 350 200

Figure 2: a) Velocity of electrons and holes as a function of electric field. b) Time for electrons an holes to transit the full
thickness of the sensor assuming Vz., = 0.
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Standard deviation of the c.o0.g. time

Time Resolution (ps)
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Figure 3: Standard deviation of the c.o.g. time from Eq. 37 for different values of silicon sensor thickness as a function of
applied voltage V', assuming A = 0.25 pm, the Landau theory and V3., =~ 0.

A d 4 7 N 4 (37)
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Figure 4: a) Amplifer response for n = 2, 3,4 from Eq. 40. b) Contribution to the time resolution from the noise.
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Noise

So for an amplifier with a peaking time of £,=1ns and n = 2, the time resolution is 60 ps for a signal to
noise ration of 10 and 20 ps for a signal to noise ratio of 30.

The pulse-height of the sensor signal is given by the total number n of deposited e-h pairs, so if we write
the noise oppise In units of electrons the signal to noise ratio is oygise/n. Since n is varying according
to the Landau distribution p(n,d) from Eq. 5, using Eq. 36 we can calculate the average signal to noise
ratio and the average resolution to

T, — Tnoise /0‘3 p(ﬂa d) dn ~ T noise 0.4A 1 (45)
fllts) Jo f/(ts) d 1+1.155log <
0.4\ 1
= Onoise - tp x(0.59,0.57,0.54,0.51)  for n=2345  (46)
d 1+1.155log$
0.4\ 1 1

x (0.10,0.12,0.13,0.14)  for n=2,3,4,5  (47)

= Onoise

d 1+1.155log% fow

For an average cluster distance of A = 0.25 ym an amplifier with n = 2, this expression becomes a sensor
thickness of d = 50 pum,

0 = Opoiselelectrons] x 1.6 x 1074 ty d = 50um (48)
=  Onoiselelectrons| x 3.3 x 10~° ty d = 200um (49)
(50)

so for a peaking time of 2ns and an equivalent noise charge of 50 electrons the noise contribution to the
time resolution is 16.6 ps. There are many methods for realizing a discrimination at constant fraction of
the signal, in the following we illustrate the method of continuos sampling.

Werner Riegler, CERN 16



Noise

(t) ult)
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N measurement points at tracker layers at position z1,z2,...,zy. We proceed as outlined in [11] where
the problem is stated as a x? minimization according to

X —ZZ i — a1 f(t) + oa f ()] Vis S — aa f(t5) + aa ' (85)] (52)

i=1 j=1

The matrix V;; is the inverse of the autocorrelation matrix R;; = R(t; — t;) with R(t) being the auto-
correlation function of the noise. The series noise of an amplifier for a given white series noise spectral
density e2 and detector capacitance C is given by

1 n? (2n — 2)!
2 1 20 2 &2 (2
020 = eC‘/ (et = 5eRCP = Qn) (53)

The autocorrelation function of this series noise is

(54)

2n|t|)” 2t K., _1/2(nt]/tp) — tK 41 0(nlt|/tp)

b (20— 2)! /2l

with K, (z) being the modified Bessel function of the second kind. For n = 2,3 evaluates to

2
t t
1ol (1 n=2 (55)
tp t

3
t t
143l g (1 n=3 (56)
tp t

R(t) = 072101'58 /Oo f—" (t + ’U.) f—" (u)du = 0'7210’!:38 n! (

Ut) = o2, e 2t/

notse

R(t) =02

noise

2 -3Itl/t

=  Onoise

4. For times
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Noise

The autocorrelation function is shown in Fig. 5b), and we see that for time intervals smaller than ¢, /2
the samples become highly correlated. In the following we us n, samples within the peaking time ¢,, so
we have sampling time bins of At = t,/n,. We sample the signal in the range of 0 < t < 5t,, giving
t; =i At with 0 < i < 5ns. Defining

ns) =Y f(t)U;' f(t;) Qo(ns) Zf(ﬁ U;' f'(t;)  Qs(ns) Zf (t)U5 f(t)  (57)

where Ugl is the inverse of the matrix U;; = U(t; —t;), the covariance matrix elements &;; for a;, ay are

then ) ) ) 5

0,2 — O noise Q2 E99 = AQ i — O hoise Ql £13 = 0 noise QS (58)
AT Q1Q2 — Q3 2 Qi1Q2— Q3 Q1Q2 — Q3

So for the time resolution we finally have

€11 =

(o . Tnoise Ql (ns) _ T noise
4 \/Qltns)czz(nsj QA ) o

Expressing again the signal amplitude in terms of the number of electrons deposited in a sensor of

thickness d we get
0.4\ 1

d 1+1.155log ¢

0t = Onoise|electrons| tpc(ns) (60)
This expression represents the optimum time resolution that can be achieved for a given sampling fre-
quency. Fig. 6 shows the function ¢(n,) assuming an amplifier with n = 2,3. The horizontal lines
correspond to the numbers of 0.59 and 0.57 from Eq. 44 when using constant fraction discrimination.
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Figure 6: The function c(ns) for an amplifier with n = 2(a) and » = 3(b). The horizontal line is the result when
discriminating the signal at the maximum slope. 19



Weighting field fluctuations

a) z=0 z=d z=0 z=d b)

Figure 7: a) A pixel of dimension we,w, centred at * = y = z = 0 in a parallel plate geometry of plate distance d. b)
Uniform charge deposit of a particle passing the silicon sensor.
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and w, centred at the origin.
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Fig. 1. (a) Point charge Q between two grounded metal planes. (b) Readout pad or pixel of dimension w, and wy, centred at the origin.
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Weighting field fluctuations for a square pixel

0.003
o ~ -~
. , N — cll In order to minimize the
: B O e | B S ——- cl2 effect, the ‘fast’ electrons
0_00&;-’::::_,*“"' s ol L TR rH -‘--: e ShOUId move tOW&FdS the pad
_oo0it |l e ellaclrien) while the ‘slow’ holes should
: move away from the pad.
—0.002 “a._‘_“' ;
C w/d
0.1 05 10 50 100 500

Figure 9: The coeflicients c11, ¢12, ¢13 for different values of w/d, where w is the width of the square pad and d is the silicon
thickness.
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Figure 10: Standard deviation for the c.o.g. time for values of d = 200 pm (a) and d = 50 pm (b) and V = 200V, assuming
uniform charge deposit and a square readout pad. The horizontal line represents the Landau fluctuations form Eq. 37. The
two curves in the plots represent the cases where either the electrons or the holes move towards the readout pad.
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Combined weighting field and Landau fluctuations
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Combined weighting field and Landau fluctuations
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Combined weighting field and Landau fluctuations
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Figure 13: C.o.g. time resolution for values of d = 200 pm and V = 200V. The ’c only’ curve refers to the effect from a
uniform line charge. In a) the electrons move towards the pixel while in b) the holes move towards the pixel.
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Figure 14: Time resolution for values of d = 50 pum and V = 200V. The ’c only’ curve refers to the effect from a uniform
line charge. In a) the electrons move towards the pixel while in b) the holes move towards the pixel. 26



Leading edge discrimination
The current signal for a single electron hole pair at position z, y, z is
io(z,y,2,t) = eg[v1 Ey(z,y,2 —v1t)O(2 /vy — t) + v By (2,y, 2 + v9t)O((d — 2) Jvg — )] (80)

The current signal for having n; e/h pairs at 2 = Az, ny e/h pairs at z = 2Az etc. is given by

i(ni,n2,...,nN, 2, Yy, t) = anin(x,y, kAz,t) (81)
k=1

We now send this signal through an amplifier with delta response cf(t/t,) where t, is the peaking time,
f(1) =1 and ¢ has units of V/C
f(z) = 2" em1—7) (82)

so the output signal becomes

t !
t—1t :
s(ni,ng,...,nN,z,y,t) = c/ f ( . ) i(n1,ng,....,nn,x,y, t')dt’ (83)
0 P

To perform slewing corrections we divide the signal by the total charge ep ) ni and we finally have the
normalized amplifier output signal

h(ni,na,...nN,z,y,t) = E Z nk g(z,y, kAz,t) (84)
k=1"% k=1

ure 11: Silicon sensor
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Leading edge discrimination

h(ni,n2,...,nN,z,y,t) = Z nk g(z,y, kAz,t) (84)
Zk 1% —

where g(z,y, z,t) is given by

o(z,y,2 ) — z—vltf ( "“*“d) Eo(2/d, y/d, u,wy/d, w, /d, 1)du

’P

+ 6(1}1t—z)/ f( z—l—ud,’) Ey(z/d,y/d,u,wg/d,wy/d,1)du
0

vitp

z4ugt
+ O[(d-— z) —vgt]f ’ f (Ugt—i—z—ud) Ey(z/d,y/d v, w,/d w,/d 1)du

vot

t ud
+ Ofvat — (d— = ]f (U2 R ) Ey(z/d,y/d,u,ws/d, wy,/d,1)du
The average normalized signal is then given by

[ fn 1 g(z,y, sd, t)ds] dzdy (85)

Wy, Wy

The variance of the signal at time ¢ is given by

Aj(t) = bgzd w:wy / / { ] 9(z,y, sd, t)*ds — ( fn 1 9(z,y, sd, t)ds) 2] dzdy
i (L g(z,y, sd, t)ds)2 dxdy — [w:wy // (ﬁl g(x,y, sd, t)ds) d;t:dy]
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Leading edge discrimination
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Figure 15: a) Average normalized signal E(t] for amplifier peaking times £, = 0.25,0.5,1,2,6ns for a 50pm sensor and
V=200V. b) The normalized average signal h(t) for ¢, = 0.25 ns together with the curves h(t) + Ay (t) and h(t) — A(t). (86)

.,
Since we ’'normalized’ the signal by the total amount of charge in Eq. 84, before applying threshold
discrimination, we also have to normalize the noise ,5ise by the total amount of charge to calculate it’s
impact. The average normalized noise is then

A 1

e Tnoise
T, = d)dn = : 87
Tnoise /ﬂ n p(n, d)dn = Tnoisc 2.50d 1+1.1551c.g§ (87)

The variance if the signal due to Landau fluctuations from Eq. 20 can therefore be expressed as equivalent
noise level expressed in electrons according to

2. 5[} d
Tlandau (t} - &h(t N (1 + 1.155 log ) (88)



Leading edge discrimination 200um sensor

Time resolution (ps) ENC (electroms )

A -

N\
Yo Iy
Vo I ST
== | )

0 1 1 L 1 1 L 1 1 1 1 1 1 L '[hmld D 1 L 1 L 1 1 1 1 L 1 L 1
a) o0 02 04 0.6 0.8 1.0 b} 0.0 0.2 04 06 0.

N

Threshold

0

Figure 17: Time resolution for a sensor of 200um thickness at 200V bias voltage. The slewing correction is performed by
dividing the signal by the total charge and applying the threshold as a fraction of this charge. The plot on the right shows
the ENC needed to match the noise effect of the time resolution to the effect from the Landau fluctuations.
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Leading edge discrimination 50um sensor
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Figure 16: Time resolution for a sensor of 50um thickness at 200V bias voltage. The slewing correction is performed by
dividing the signal by the total charge and applying the threshold as a fraction of this charge. The plot on the right shows
the ENC needed to match the noise effect of the time resolution to the effect from the Landau fluctuations.

E.g. for a 50um sensor with tp=1ns, a threshold at 20% of the most probable
value and a noise value of 50 electrons one should manage to stay <20ps time
resolution.
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Sensors with internal gain, c.0.g. time resolution

Gain \

T=

Vq
T=zlv,

T>zlv,

d

Figure 18: Silicon sensor with internal gain. An e-h par is produced at position z, the electron arrives at = = 0 at time
T = z/v1, the electron multiplies is a high field layer at z = 0 and the holes move back to z = d, inducing the dominant
part of the current signal.

process are moving back from z = 0 to z = d through the entire sensor thickness d. If we assume the gain
G to be sufficiently large such that the signal from the primary electron and hole movement is negligible,
if we assume the amplification structure to be infinitely thin and if in addition we assume a sensor with
depletion voltage Vg, = 0, the signal from a single e-h pair created at position z is simply a 'box’ of
duration T" = d /vy, shifted by the time T, = z /v,

. v
it) = — % Ot — z/v1) — Ot — z/v1 — d/v2)] (90)
The c.o.g. time of this signal is
d z
R 91
T 2uo + v1 ( )
The signal for the case of nq, na, ..., ny clusters at positions zy, 29, ..., 2y is then
N N
1 d zk) d 1 A
T(ni,ng,..,ny) = ——— ngl—+—]|=—+4+——— ng— 92
( : PR k§1 (2?"2 U1 02 Yplim i .

Proceeding as before we get for the average and variance of the c.o.g. time the expression

2
d(l 1) A [tvd d 1 T

= = 93
Az 120%  \/1+1.155logd/X V12 (82) 32
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Sensors with internal gain, c.0.g. time resolution
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Figure 19: Standard deviation of the c.o.g. time from Eq. 37 for 50pum and 100 gm thickness for standard sensors (solid)
and from Eq. 93 for an internal gain of electrons with a signal only from gain holes (dashed).

d (1 1 [byd  d? 1 T
T=—|—+— A= = 93
2 (vl ’Ug) Az 120 v/ 1+ 1.1551logd /) V12 (93)

The c.o.g. time resolution of sensors with internal gain is significantly worse than the time
resolution without gain. The ‘time distribution’ essentially becomes and arrival time
distribution of electrons.

- When using internal gain one is tied to fast electronics in order to catch the first arriving
electrons.
Werner Riegler, CERN 33



Sensors with internal gain, weighting field effect on the c.0.g. time

10. Weighting field effect on the c.o.g. time for silicon sensors with gain

A single electron arriving at time t = 0 at the pixel at 2 = 0 will be create a number of holes with a
gain of G and the signal due to the holes moving back to z = d with velocity vy is

i(t) = —Gqug Bz, y,va(t — z/v1)] [O(t — 2/v1) — Ot — z/v1 — d/vy)] (94)

The c.o.g. time for the signal of a cluster of holes moving from the readout pixel at z = 0 to z = d with
velocity vs is given by
1
z d
T($1 Y, Z) = — + — ga'lﬂ(z‘l ’y,Sd)dS (95)
v U2 Jo

Assuming a uniform charge deposit along the track, the c.o.g. time becomes

@)=L [ty ad =t L[ gy say (96)
7(2,y) = 7 ; T(x,y, 2 2_2“1»‘1 o o wl(z,y,sd)ds
The variance for uniform irradiation of the pad is the
A2 = TP o7)
d2 1 1 2 1 1 2
- 5 /] ( / aaw(:c,y,sd)ds) dmdy—( /] ( / qﬁw(ss,y,sd)ds) d:cdm)
Uy | Wz Wy 0 Wz Wy 0
dﬂ
= —5 520 ="T5 82
U3

Werner Riegler, CERN 34



Sensors with internal gain, weighting field effect on the c.0.g. time

In case we also take into account the Landau fluctuations we have to use Eq. 95 in Eq. 74 and find

byd d? d? byd T?
i — s =——-L,T 98
Az 1202 T U%SH Az 12 Tl (98)

A2 =712 _72 =

so we find the interesting result that in this case there is no correlation between the Landau fluctuations
and the weighting field fluctuations and Landau fluctuations do just add in squares.
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Sensors with internal gain, weighting field effect on the c.0.g. time
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Sensors with internal gain, leading edge discrimination of a signal
normalized to the total charge.
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Figure 20: Time resolution for a sensor of 50um thickness at 200V bias voltage. The slewing correction is performed by
dividing the signal by the total charge and applying the threshold as a fraction of this charge. The plot on the right shows
the ENC needed to match the noise effect of the time resolution to the effect from the Landau fluctuations.

There is no more correlation of the time to the total charge, only to the leading
edge charge ...

Werner Riegler, CERN 37



Summary

The c.0.g. time of a signhal is measured by using an amplifier response time
(peaking time) that is longer than the signal duration. It might represent an
interesting way to measure timing with relatively ‘slow’ electronics — if noise
allows.

The ‘standard deviation’ of the center of gravity (c.0.g.) time of a silicon sensor
signal of 50/200um thickness due to Landau fluctuations is 23/180ps at 200V,
assuming large pads and negligible depletion voltage.

To minimize the weighting field effect on the c.o0.g. time resolution, the electrons
should move towards the pad while the holes move away from the pad.

For a 50um sensor with 50x50um pixels, the weighting field effect should still not
destroy the time resolution. N.B. — the formulas hold for perpendicular tracks
neglecting diffusion !

Using internal gain, one is tied to fast electronics and leading edge
discrimination to catch the first arriving electrons.

The slewing (from pulseheight variations) in sensors with gain is not related to
the total charge but to the ‘leading edge charge’i.e. constant fraction techniques
using the leading edge.
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