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Silicon sensors with high precision timing are used in present experiments, like the 
NA62 Gigatracker, or planned to be used for the LHC PhaseII upgrade, like the LGAD 
development. Trackers with 10um position and 10ps time resolution are quoted as a 
long term goal for these developments. This report will discuss analytic expressions 
for the time resolution of silicon sensors, with focus on the key contributions to the 
time resolution, namely Landau fluctuations, noise and variations of the weighting 
field. The impact of amplifier bandwidth is discussed as well.
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Time resolution in Resistive Plate Chambers
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Time resolution in Resistive Plate Chambers

 Interested in understanding how the basic contributions to the time 
resolution differ between RPCs and silicon sensors
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Time resolution of silicon pixel sensors
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Energy deposit in silicon
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Cluster Size Distribution

PAI model, ‘plasmon peak’



Werner Riegler, CERN 7

Energy deposit in silicon
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Timing of a detector signal, c.o.g. time
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Timing of a detector signal, c.o.g. time

 An amplifier with a peaking time larger than the duration of the detector 
signal measures the c.o.g. time of the detector signal.

 This does not mean that the c.o.g. time gives the best possible time 
resolution, but it allows the characterization of time resolution independently 
of the amplifier and might still be of practical importance …
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C.o.g. time of a silicon detector signal
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C.o.g. time of a silicon detector signal
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C.o.g. time of a silicon detector signal
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Driftvelocities of electrons and holes
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Standard deviation of the c.o.g. time
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Noise
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Noise
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Noise
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Noise
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Noise

For 2-3 samples within the 
peaking time, the contribution 
is similar to the cosntant 
fraction discrimination.

Beyond that one can improve 
by about a factor 2-3 for very 
high frequency smapling.
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Weighting field fluctuations
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Weighting field fluctuations for a square pixel

In order to minimize the 
effect, the ‘fast’ electrons 
should move towards the pad 
while the ‘slow’ holes should 
move away from the pad. 
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Combined weighting field and Landau fluctuations 
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Combined weighting field and Landau fluctuations 
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Combined weighting field and Landau fluctuations 



Werner Riegler, CERN 27

Leading edge discrimination
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Leading edge discrimination
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Leading edge discrimination
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Leading edge discrimination 200um sensor



Werner Riegler, CERN 31

Leading edge discrimination 50um sensor

E.g. for a 50um sensor with tp=1ns, a threshold at 20% of the most probable 
value and a noise value of 50 electrons one should manage to stay <20ps time 
resolution.



Werner Riegler, CERN 32

Sensors with internal gain, c.o.g. time resolution
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Sensors with internal gain, c.o.g. time resolution

The c.o.g. time resolution of sensors with internal gain is significantly worse than the time 
resolution without gain. The ‘time distribution’ essentially becomes and arrival time 
distribution of electrons.

 When using internal gain one is tied to fast electronics in order to catch the first arriving 
electrons.
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Sensors with internal gain, weighting field effect on the c.o.g. time
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Sensors with internal gain, weighting field effect on the c.o.g. time
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Sensors with internal gain, weighting field effect on the c.o.g. time
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Sensors with internal gain, leading edge discrimination of a signal 
normalized to the total charge.

There is no more correlation of the time to the total charge, only to the leading 
edge charge …
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Summary

The c.o.g. time of a signal is measured by using an amplifier response time 
(peaking time) that is longer than the signal duration. It might represent an 
interesting way to measure timing with relatively ‘slow’ electronics – if noise 
allows.

The ‘standard deviation’ of the center of gravity (c.o.g.) time of a silicon sensor 
signal of 50/200um thickness due to Landau fluctuations is 23/180ps at 200V, 
assuming large pads and negligible depletion voltage.

To minimize the weighting field effect on the c.o.g. time resolution, the electrons 
should move towards the pad while the holes move away from the pad.

For a 50um sensor with 50x50um pixels, the weighting field effect should still not 
destroy the time resolution. N.B. – the formulas hold for perpendicular tracks 
neglecting diffusion !

Using internal gain, one is tied to fast electronics and leading edge 
discrimination to catch the first arriving electrons.

The slewing (from pulseheight variations) in sensors with gain is not related to 
the total charge but to the ‘leading edge charge’ i.e. constant fraction techniques 
using the leading edge.


