Preliminary results from UFSD beam test @ FNAL

Large collaboration, CMS – ATLAS groups involved

A. Mangu, C. Peña, M. Spiropulu, S. Xie

California Institute of Technology

The University of Kansas

FNAL

N. Minafra, H. Al Ghoul, C. Royon

A. Apresyan, G. Derylo, L. Gray, S. Los, A. Prosser, R. Rivera, L. Uplegger

P. Freeman, H. Sadrozinski, E. Spencer, M. Wilder,F. Martinez-Mckinney, Z. Galloway, A. Seiden,Y. Ghao, C. Labitan, Z. Luce

University of California Santa Cruz

R. Arcidiacono, N. Cartiglia, M. Ferrero, V. Sola, M. Torino Mandurrino, A. Staiano

Key improvements of FNAL Beam test

Many groups involved → strong analyses community Temperature control Three read-out boards Accurate tracking

Results in this talk:

- Time resolution
- Effect of temperature
- Efficiency scans vs x- and y-position
- Fill factor
- Effect of AI. metal cover on the UFSD response

The electronics: KU, UCSC, FNAL boards

Several boards with 2, 4 or 8 channels were used for the characterization of the UFSDs.

N. Cartiglia, H. Sadrozinski

Slide: N. Minafra

201

UNG

≥0

Fermilab Testbeam Facility

Chiller runs to -25C, a Peltier cell keeps stable the temperature of the boards at **-20C** Nitrogen gas keeps humidity low and prevent condensation

* Study of the timing performance of micro-channel plate photomultiplier for use as an active layer in a shower maximum detector, NIMA

Slide: N. Minafra

Sensor and amplifier tested

The different sensors were tested using the different boards in various conditions: bias, temperature and irradiation

Sensor	KU board 2 ch	UCSC board 4 ch	FNAL board 4 ch	
HPK 50A	-630V			
HPK 50B	-450V -550V -600V -510V -510V -570V			Temperature: 20C
HPK 50C	-400V	-410V -470V		-10C
HPK 50D	-100V -200V -250V -300V -325V		-250V -300V -210V -250V -250V -280V	-20C
CNM W9HG11		-140V -160V		
HPK 50D 6e14 neq/cm ²		-600V -635V		
CNM W11LGA35 6e14 neq/cm ²			-400V -420V	

Slide: N. Minafra

Boards performance

-GAD R&D Group 3T FNAL May 2017, Preliminary

Slide: N. Minafra

All the tested amplifiers able to exploit the performance of the sensors

Temperature dependence

The gain of the sensor increases at lower temperatures while the effect on the noise is negligible: performances improve at low temperature

HPK 50D on FNAL board -250V	MIP 20C (mV)	MIP -20C (mV)	noise 20C (mV)	noise -20C (mV)	SNR 20C	SNR -20C
Ch 1	20	45	1.2	1.2	17	38
Ch 2	20	44	1.2	1.2	17	37
Ch 3	20	44	1.2	1.2	17	37
Ch 4	19	44	1.2	1.2	16	37

HPK 50D on FNAL board @ -250V	Time precision (ps)	Time precision (ps)
Ch 1	64	44
Ch 2	62	44
Ch 3	65	43
Ch 4	67	42

LGAD R&D group BT FNAL May 2017, Preliminary

Slide: N. Minafra

HPK 50D Efficiency vs position

Fill-Factor vs. "no-gain" Pad Distance & Pad Size

"no-gain "region between pads

Improvement of fill factor with reduction of no-gain distance from 100 to 50 to 30 μ m : Pad size 1mm: FF = 81% -> 90% -> 94% Pad size 1.4mm: FF = 86% -> 93% -> 96%

Is there a difference between CNM and HPK LGAD arrays?

At first look: no.

Both have $100 \,\mu$ m no-gain zone. Need to improve!

CNM W9HG11 – Dead Area between 3x3 mm^2 pads

y2*cos(-.03) + x2*sin(-.03):x2*cos(-.03) - y2*sin(-.03) {tmax4[0]-cfd0[50]>-5.8&&tmax4[0]-cfd0[50]<-4.8&&pmax4<2000&&pmax4[0]>100}

- Dead area is approximately 100 μm
- Approximately equal in horizontal and vertical directions
- Statistics may be too low for study of edge effects, for example amplitude as function of position

LGAD R&D group BT FNAL May 2017, Preliminary

HPK 50C PIX – Dead Area between 3x3 mm^2 pads

The dead area has a width of ~100um.

More refined analysis underway.

LGAD R&D group BT FNAL May 2017, Preliminary

Effect of metal covering on the LGAD response

2x2 CNM Array (completely covered in metal) no effect pre-rad Preliminary Slide: H. Sadroziński

Al metallization in HPK LGAD

Looking forward to a beam test campaign with irradiated HPK arrays and CNM single pads.

Summary

Very good collaboration from different groups and experiments

- Accurate tracking allows extracting a wealth of new information
- Time resolution of ~ 35 40 ps confirmed by a lot of new results
- Strong effect of Temperature (for once an effect is actually helping)
- Good signal uniformity across pads
- Study of fill factor defines new R&D direction aimed at large area construction
- Need to understand Al-related difference in UFSD response. Is this a "universal effect" or it is a production effect?