Defect Characterization

• Aim of defect studies:

- Identify defects responsible for Trapping, Leakage Current, Change of N_{eff}, Change of E-Field
- Understand if this knowledge can be used to mitigate radiation damage (e.g. defect engineering)
- Deliver input for device simulations to predict detector performance under various conditions
- Method: Defect Analysis performed with various tools inside RD50:
 - C-DLTS (Capacitance Deep Level Transient Spectroscopy)
 - TSC (Thermally Stimulated Currents)
 - PITS (Photo Induced Transient Spectroscopy)
 - FTIR (Fourier Transform Infrared Spectroscopy)
 - EPR (Electron Paramagnetic Resonance)
 - TCT (Transient Current Technique)
 - CV/IV (Capacitance/Current-Voltage Measurement)
 - MW-PC (Microwave Probed Photo Conductivity)
 - PC, RL, I-DLTS, TEM,... and simulation
 - RD50: several hundred samples irradiated with protons, neutrons, electrons and ⁶⁰Co-γ

Example: TSC measurement on defects produced by 23 MeV, 188 MeV and 23 GeV protons

Boron related defects

- Leonid Makarenko (Minsk)
 - Defect spectroscopy on p-type sensors (DLTS)
 - BiOi measured ... data analyses ongoing

Summary on defects with strong impact on device performance after irradiation

- Trapping: Indications that E205a and H152K are important (further work needed)
- Converging on consistent set of defects observed after p, π , n, γ and e irradiation.
- Defect introduction rates are depending on particle type and particle energy and (for some) on material!

Summary on defects with strong impact on device performance after irradiation

• Most important defects [for details and references see JAP 117, 164503, 2015]

Defect	Assignment and particularities	Configuration	Energy levels (eV) cross section (cm ²)	Impact on electrical characteristics of Si diodes at room temperature (RT)
E(30K)	 Not identified extended defect Donor in tupper part of the bandgap, strongly generated by irradiation with charged particles. ^{10,29} Linear fluence dependence. ^{this work} 	E(30K) ^{0/+}	$E_{c}-0.1$ $\sigma_{n} = 2.3 \times 10^{-14}$	 Contributes in full concentration with positive space charge to Neff
BD	Thermal double donor (TDD2) - point defect - Bistable donor existing in two configurations (A, B)	BDA0/++	$E_{C} - 0.225$ $\sigma_{n} = 2.3 \times 10^{-14}$	- It contributes twice with its full concentration with positive space charge
	in Oxygen rich material. ^{24, 26, 27}	BD _B ^{+/++}	Ec - 0.15 σ _n = 2.7 x 10 ⁻¹²	to Neir, in both of the configurations
Ip	 Not identified point defect Suggestions: V₂O or a C related center. ^{22-24, 10} 	I _p +/0	$\frac{E_V + 0.23}{\sigma_p = (0.5-9) \times 10^{-15}}$	- No impact
	 Amphoteric defect generated via a second order process (quadratic fluence dependence), strongly generated in Oxygen lean material.^{22-24, this work} 	I _p 0/-	$\begin{array}{c} E_{C} - 0.545 \\ \sigma_{n} = 1.7 \ x 10^{-15} \\ \sigma_{p} = 9 \ x \ 10^{-14} \end{array}$	- Contributes to both N_{eff} and LC
E75	Tri-vacancy (V3) - small cluster -Bistable defect existing in two configurations (FFC	FFC V3 ^{-/0}	$E_c - 0.075 eV$ $\sigma_n = 3.7 x 10^{-15}$	 No impact
E4	and PHR) with acceptor energy levels in the upper part of the bandgap. ^{10, 28, 30-33}	PHR V3=	$E_c - 0.359$ $\sigma_n = 2.15 \times 10^{-15}$	 No impact
E5	-Linear fluence dependence. ^{this work}	PHR V3 ^{-/0}	$\begin{split} E_c &= 0.458 \\ \sigma_n &= 2.4 \times 10^{-15} \\ \sigma_p &= 2.15 \times 10^{-13} \end{split}$	- Contributes to Leakage Current
H(116K)	 Not identified extended defect Acceptor in lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work} 	H(116K) ^{0/-}	$E_V + 0.33$ $\sigma_p=4 \ge 10^{-14}$	
H(140K)	 Not identified extended defect Acceptor in the lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work} 	H(140K) ^{0/-}	$E_V + 0.36$ $\sigma_p=2.5 \ge 10^{-15}$	Contribute in full concentration with negative space charge to Neff
H(152K)	 Not identified extended defect Acceptor in lower part of the bandgap. ^{10, 29} Linear fluence dependence. ^{this work} 	H(152K) ^{0/-}	$E_V + 0.42$ $\sigma_p = 2.3 \times 10^{-14}$	Reverse annealing!

Nitrogen enriched Silicon

- New defect and material engineering approach: Nitrogen enriched silicon
 - Produced in collaboration with wafer foundry TOPSIL, Denmark/Poland
 - 4 materials used:
 - Floating Zone (Standard, Nitrogenated, Oxygenated)
 - Magnetic Czochralski
 - Processing at CNM Barcelona Spain
 - Sensors ready in 4/2017 (in excellent quality) being distributed for radiation testing now

- Defect and Material Characterization (Convener: Ioana Pintilie, Bucharest)
 - Consolidate list of defects and their impact on sensor properties (Input to simulation group) including introduction rates & annealing for different type of irradiations and materials
 - Extend work on p-type silicon including low resistivity material
 - Understand boron removal in lower resistivity p-type silicon: Performance of MAPS, CMOS sensors, LGAD ... adding new macroscopic measurements
 - Working group on acceptor removal formed!
 - Characterization of Nitrogen enriched silicon (starting project, wafers ready)