Recent progress of the RD50 collaboration towards an R&D HV-CMOS submission in the 150 nm node from LFoundry

<u>E. Vilella</u>^{a*}, O. Alonso^b, R. Casanova^c, G. Casse^a, A. Diéguez^b, S. Powell^a, J. Vossebeld^a, C. Zhang^a

^aDepartment of Physics University of Liverpool Oliver Lodge Liverpool L69 7ZE UK ^bDepartment of Engineering: Electronics University of Barcelona C/ Martí i Franquès, 1 08028 Barcelona Spain

*<u>vilella@hep.ph.liv.ac.uk</u>

Eva Vilella – 30th RD50 Workshop – Krakow, 5-7 Jun 2017

^cIFAF

Universitat Autònoma de Barcelona

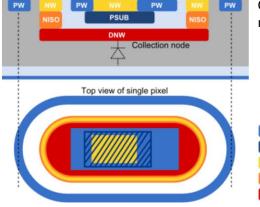
08193 Bellaterra

Barcelona

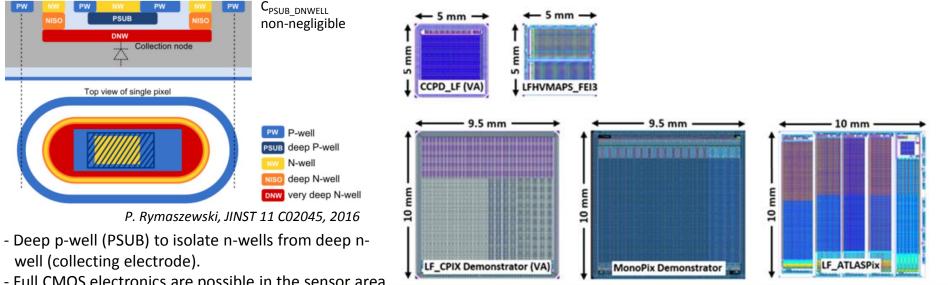
Spain

Outline

1. Technical features of available foundries

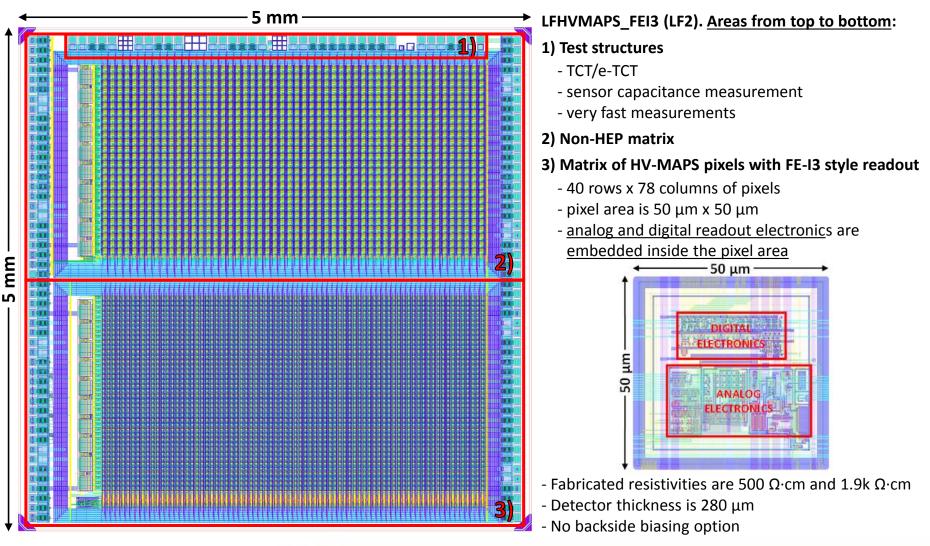

- 2. Our experience with LFoundry
- 3. Short term plans
- 4. Longer term plans
- 5. Summary

Technical features


Foundry	Feature node [nm]	НV [V]	HR [Ω∙cm]	Depletion region [µm]	P-N wells	Metal layers	Backside biasing	Stitching	TSV
ams	350 180	<150	20 – 1k 10 – 1k	140	Triple	4 6	No	No	Yes
LFoundry	150	<120	10 – 4k	170	Quadruple	6	Yes	Yes	No
TowerJazz	180	<6	1k – 8k	18 – 40	Quadruple	6	Yes	No	No
XFAB	180	<200	100	-	BOX layer	7	No	No	No
ESPROS	150	<20	2k	50	Quadruple	6	Yes	No	No

Sensor cross-section:

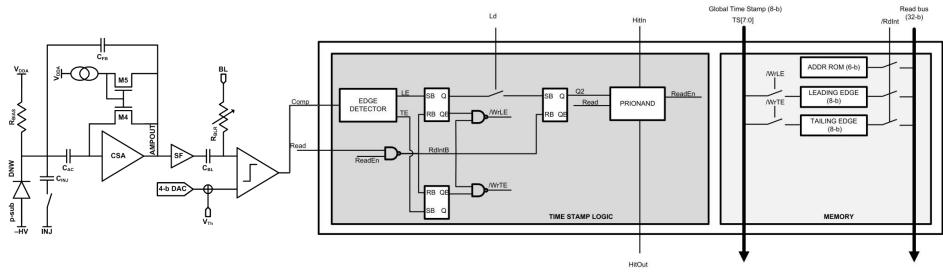
Prototypes:


3/20

- Full CMOS electronics are possible in the sensor area.

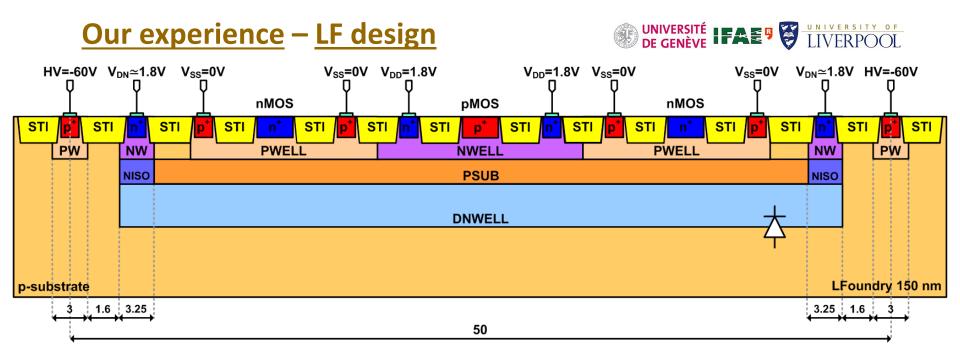
Our experience – LF design

4/20



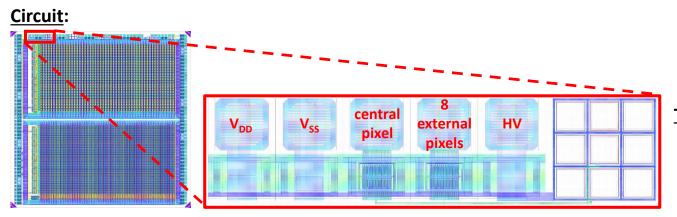
Eva Vilella – 30th RD50 Workshop – Krakow, 5-7 Jun 2017

UNIVERSITÉ IFAE V VIVERSITY OF LIVERPOOL

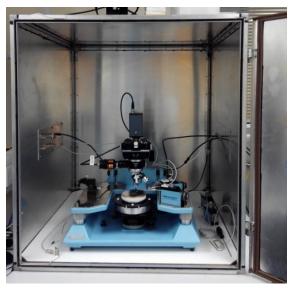

Our experience – LF design

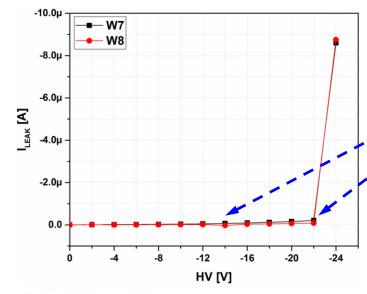
UNIVERSITÉ IFAE VIVERSITY OF LIVERPOOL

- The **analog readout** is based on a **biasing circuit, CSA, low-pass/high-pass filters and discriminator**
 - The CSA is a single folded Cascode with pMOS input transistor with programmable discharging current
 - The baseline (BL) voltage and low-pass/high-pass filters are adjustable
 - The discriminator has a local 4-bit DAC to compensate for offset variations
- The digital readout is based on FE-I3 style:
 - Two 8-bit DRAM memories that continuously store two time stamps (Leading Edge, Trailing Edge)
 - ToT = TE LE (off-chip)
 - One 8-bit ROM memory to store the pixel address
 - **Electronics (edge detector)** to process the output of the discriminator and tell when the LE and TE have to be stored
- Pixel receives an 8-bit Gray encoded TS running at 40 MHz
- Total power consumption per pixel is ~27 μ W (pre-amplifier current is <10 μ A)



- The sensing diode is a DNWELL/p-substrate junction
- The DNWELL can be isolated from PWELLs/NWELLs thanks to the PSUB layer
- Therefore, it is possible to have fully CMOS electronics inside the pixel area
- In our case, we have multiple PWELLs and NWELLs:
 - 1 PWELL/NWELL for the CSA and the shaper
 - 1 PWELL/NWELL for the CMOS discriminator
 - 1 PWELL/NWELL for the digital readout
 - 1 NWELL for the pMOS transistors of the sensor bias circuit (this NWELL is connected to the DNWELL)
- The DNWELL is biased through an n⁺/NWELL/NISO structure


Our experience – LF measurements



Test structure for eTCT:

- 3 x 3 matrix of HV-CMOS pixels
- pixel size is 50 μm x 50 μm
- no readout electronics

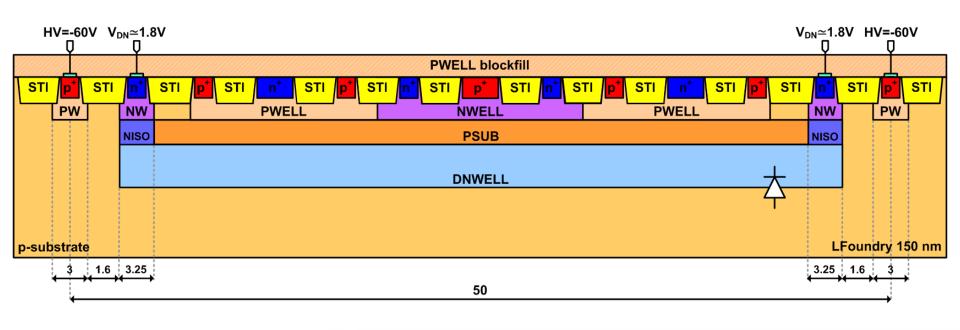
I-V measurements with probe station:

7/20

Matrix of pixels with FE-I3 style readout:

- currently testing the readout electronics, just started
- we'll know more soon

Too high leakage current Too low breakdown voltage

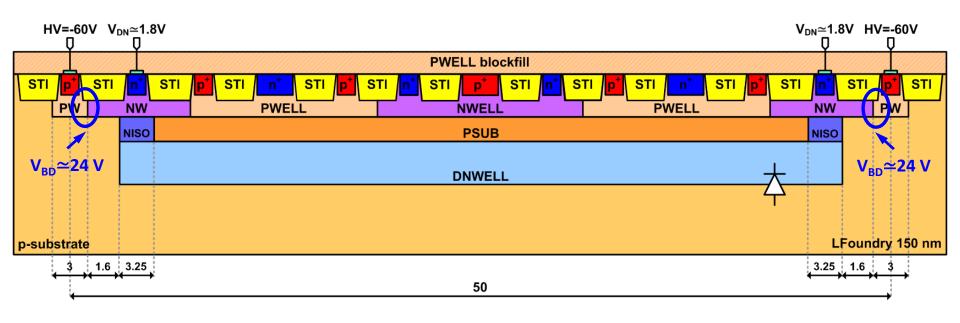


What did go wrong?

• LFoundry informed us that the V_{BD} of a PWELL/NWELL junction is $\simeq 24 \text{ V}$

8/20

- LFoundry is a technology with *Design-For-Manufacturing post-processing* that includes:
 - Autogeneration of PWELL \rightarrow Can be avoided drawing PWELL blockfill in the design (we did)

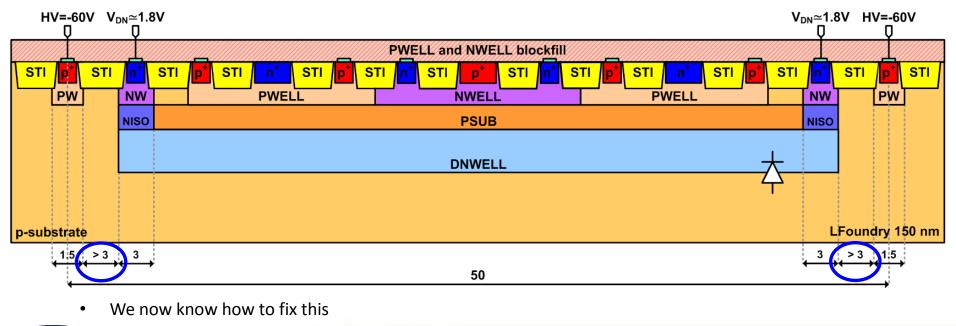


What did go wrong?

• LFoundry informed us that the V_{BD} of a PWELL/NWELL junction is $\simeq 24 \text{ V}$

9/20

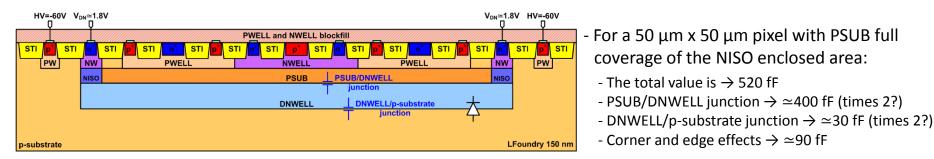
- LFoundry is a technology with *Design-For-Manufacturing post-processing* that includes:
 - Autogeneration of PWELL \rightarrow Can be avoided drawing PWELL blockfill in the design (we did)
 - Autogeneration of NWELL \rightarrow Can be avoided drawing NWELL blockfill in the design (we didn't do)
 - As a result of that, the V_{BD} we see is between the PWELL/NWELL junction and not between the p-substrate/DNWELL junction

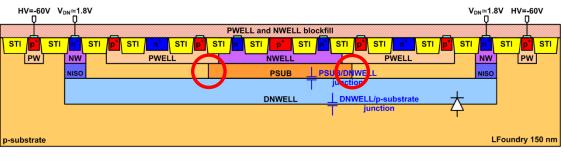


What did go wrong?

• LFoundry informed us that the V_{BD} of a PWELL/NWELL junction is $\simeq\!24$ V

10/20


- LFoundry is a technology with *Design-For-Manufacturing post-processing* that includes:
 - Autogeneration of PWELL \rightarrow Can be avoided drawing PWELL blockfill in the design (we did)
 - Autogeneration of NWELL \rightarrow Can be avoided drawing NWELL blockfill in the design (we didn't do)
 - As a result of that, the V_{BD} we see is between the PWELL/NWELL junction and not between the p-substrate/DNWELL junction
- In addition to that, if we want high V_{BD} (> 60 V), we need to increase the PWELL/NWELL separation to > 3 µm (with 3 µm, $V_{BD} \approx 75$ V with standard resistivity substrate) \rightarrow This forces us to re-design the pixel


Sensor parasitic capacitance

• <u>TCAD simulations</u> → Done by Lingxin Meng (Uni. Liverpool) and Jens Dopke (RAL) using TCAD_15 A files set provided by LFoundry

11/20

- It is mandatory to minimize PSUB

- LFoundry has given us permission to make PSUB smaller than the NISO enclosed area
- Final PSUB/DNWELL capacitance will depend on the size and number of pMOS transistors
- Need to leave 1 μm overlap between PWELL and PSUB to avoid punch-through between the NWELL and DNWELL

Short term plans

- We think it is mandatory to <u>fabricate a small free-of-errors design</u> and prove that sensors + readout electronics work well before submitting a large very expensive MLM/engineering run
- We are currently working towards the <u>design of a small MPW</u>
 - What will this design include? \rightarrow Re-designed matrix with 50 µm x 50 µm "à la FEI3" FEI3 pixels
 - It's "only" a re-design (less time needed)
 - We think this is very interesting for the community
 - If time allows, also a small version of matrix 1 with analog sampling circuits (please, see slides 15-16)
 - Test structures for TCT/e-TCT
 - Re-designed I/O pads with DNWELL (instead of NISO) as the deepest layer for additional isolation from the substrate
 - **PDK version** \rightarrow V1.1.0 (with improvements with respect to previous versions)
 - Submission date → Next possible MPW is 14-August-2017

- Area \rightarrow Minimum possible area allowed by LFoundry for MPW production (6 mm²)
- **Price** → 900 €/mm² + VAT
 - For 6 mm², the price is 5400 € + VAT (1 wafer with standard resistivity and 40 chips)
- We are looking for funding options

Longer term plans – MLM/Engineering run

IO pads	IO pads	IO pads	IO pads	IO pads	Matrix 5 Type A		IO pads
Test 1	Matrix 1 with an analog	Matrix 2 with a time-to- digital converter circuit to sample the sensor time	Matrix 3 with super-fast pixel, ideally within 1-2 BXs	Matrix 4 imaging matrix with different sensor cross- sections	(reticle- boundary readout, pre- stitching)	IO pads	Test 4
IO pads							IO pads
Test 2					Matrix 5 Type B (reticle- boundary readout,		Test 5
IO pads						IO pads	IO pads
Test 3	IO pads	IO pads	IO pads	IO pads	pre- stitching)		Test 6

Test structure 1		Simple CMOS capacitors to study oxide thickness
Test structure 2		10 x 10 matrix of very small pixels with passive readout
Test structure 3		10 x 10 matrix of very small pixels with 3T-like readout
Test structure 4		Small matrix of pixels for TCT, e-TCT and TPA-TCT
		measurements
Test structure 5		Single pixels for sensor capacitance measurements
Test structure 6		
UNIVERSITY	0 F	

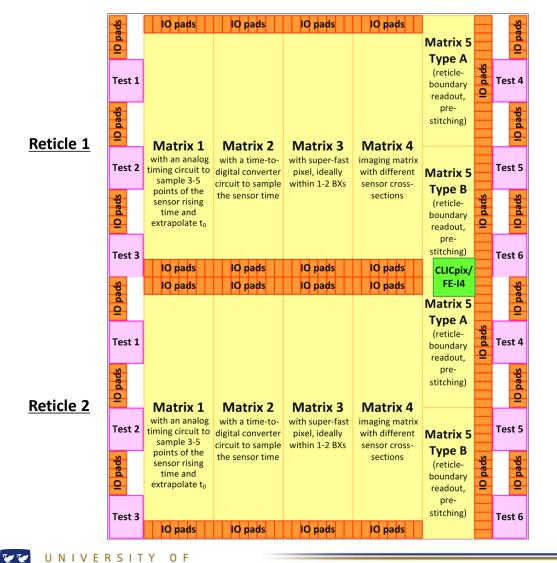
CERN/RD50 collaboration:

- International project to develop radiation hard semiconductor devices for very high luminosity colliders

Target of this submission:

- Improve the timing resolution of HV-CMOS sensors with different solutions implemented at the readout circuit level
- Study new sensor cross-sections
- Study pre-stitching options (increase the device area beyond the reticle size limitation)

Technology:


- 150 nm HV-CMOS from LFoundry

Design effort:

- IFAE (R. Casanova)
- Uni. Barcelona (O. Alonso)
- Uni. Liverpool (S. Powell, E. Vilella and C. Zhang)
- FBK (N. Massari and M. Perenzoni)

Longer term plans – MLM/Engineering run

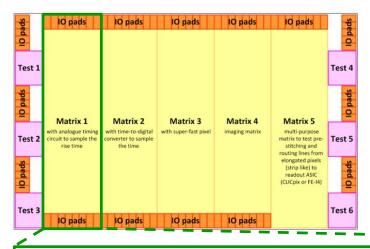
14/20

OF

CERN/RD50 collaboration:

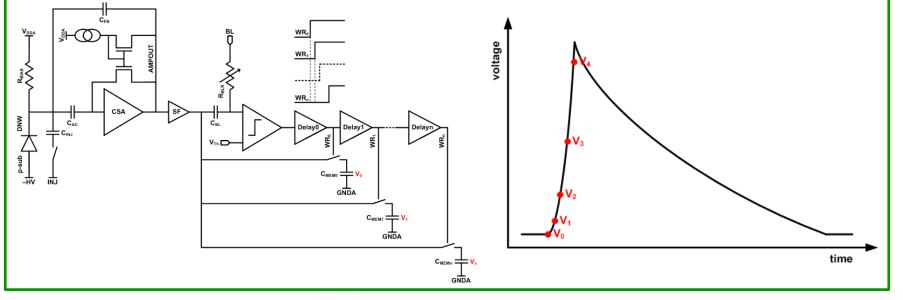
- International project to develop radiation hard semiconductor devices for very high luminosity colliders

Target of this submission:


- Improve the timing resolution of HV-CMOS sensors with different solutions implemented at the readout circuit level
- Study new sensor cross-sections
- Study pre-stitching options (increase the device area beyond the reticle size limitation)

Technology:

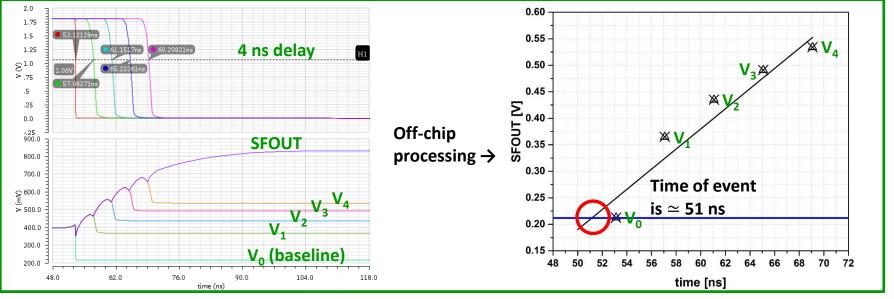
- 150 nm HV-CMOS from LFoundry


Design effort:

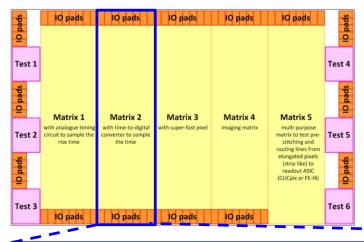
- IFAE (R. Casanova)
- Uni. Barcelona (O. Alonso)
- Uni. Liverpool (S. Powell, E. Vilella and C. Zhang)
- FBK (N. Massari and M. Perenzoni)

Matrix with analog sampling circuit:

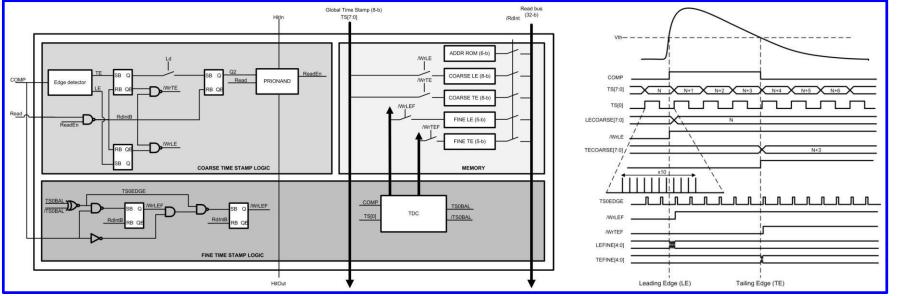
- Chain of delay elements to generate WR₀, WR₁, ..., WR_n (signals to enable writing the sensor analog value, i.e. the voltage) when there is an event
- First value is the baseline voltage
- Time-stamp of first value + programmable delay
- Analog memories based on metal-insulator-metal capacitances (< 5 per pixel)
- Analog serializers to send the data off-chip + off-chip ADCs
- Off-chip processing to determine t₀ (time of event)



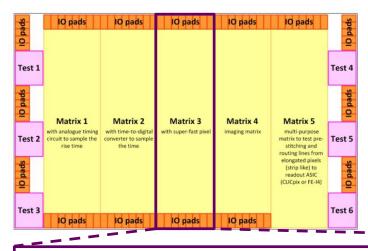
15/20


Matrix with analog sampling circuit:

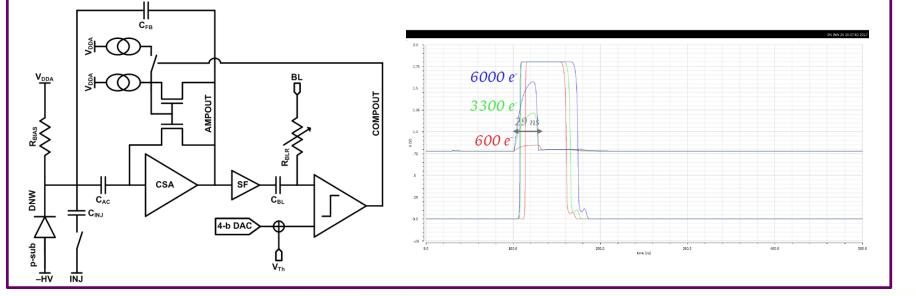
- Chain of delay elements to generate WR₀, WR₁, ..., WR_n (signals to enable writing the sensor analog value, i.e. the voltage) when there is an event
- First value is the baseline voltage
- Time-stamp of first value + programmable delay
- Analog memories based on metal-insulator-metal capacitances (< 5 per pixel)
- Analog serializers to send the data off-chip + off-chip ADCs
- Off-chip processing to determine t_0 (time of event)

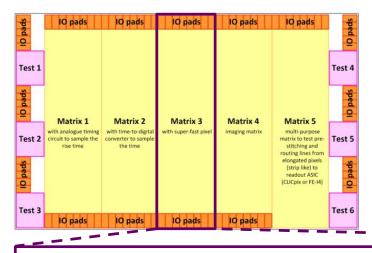


16/20

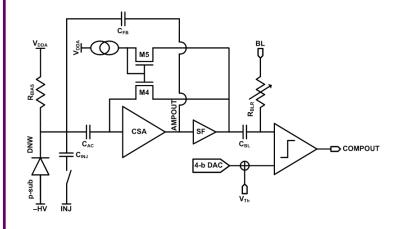

Matrix with in-pixel Time-to-Digital Converter (TDC):

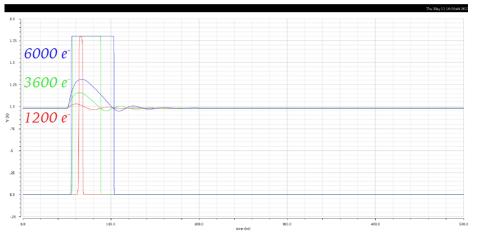
- Leading Edge and Trailing Edge time stamp capture
- TS measured with 2.5 ns accuracy:
 - Coarse time measurement (25 ns accuracy) \rightarrow global time stamp
- Fine time measurement (2.5 ns accuracy) \rightarrow TDC


17/20


Matrix with very fast amplifier:

- The target is to recover BL voltage after an event in < 2 BXs
- **Option 1** \rightarrow Amplifier with continuous slow reset + switched fast reset
- The output of the comparator is used to enable the fast reset when there is an event
- The current consumption is slightly higher only when there is an event (total power consumption per pixel is $\simeq 30 \ \mu\text{W}$)
- Total recovery time < 50 ns (independent of input energy)
- No ToT info is possible




18/20

Matrix with very fast amplifier:

- The target is to recover BL voltage after an event in < 2 BXs
- **<u>Option 2</u>** \rightarrow Fast amplifier with continuous reset
- Optimized transistor sizing and biasing
- Total recovery time is \simeq 50 ns (dependent on input energy)
- ToT info is possible

19/20

Summary

• The **150 nm HV-CMOS technology from LFoundry** is attractive for HEP applications as

- it is a HV/HR technology
- CMOS electronics inside the pixel area are possible
- there is a high number of metal layers for routing
- backside biasing is possible
- stitching is also possible
- it offers cost-efficient prototyping
- Our current experience with LFoundry relies on an MPW where the sensors need to be improved
- We need more studies on the sensor parasitic capacitance
- We need to re-design the pixels and submit this as a second MPW before submitting a large very expensive MLM/engineering run
- We are currently working for this second MPW, which will contain
 - re-designed matrix with 50 μm x 50 μm "à la FEI3" FEI3 pixels
 - a small version of matrix 1 with analog sampling circuits (if time allows)
 - test structures for TCT/e-TCT
- Our longer term plans, include the **submission of an MLM/engineering run** with

20/20

- 3 matrices of pixels with solutions implemented at the readout circuit level to improve the sensor timing resolution
- 1 matrix of pixels with new sensor cross-sections
- 1 matrix of pixels to study pre-stitching options
- several test structures

Many thanks for your attention!

