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Spacetime foam

There is consensus that at the Planck scale spacetime should depart from
its continuum structure. This vision is shared by a number of quantum
gravity versions.

Figure 1: Spacetime at Planck scales.
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Effective approach

The difficulty to reach the scale mP ≈ 1019 GeV has stimulated the search
of new physics in the form of small departures to the standard model. In
particular, suppressed effects of Lorentz invariance violation described
within the framework of effective field theory.

Standard Model Extension (SME), mass dimension d ≤ 4 [D. Colladay and

V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997); D. Colladay and V. A. Kostelecky, Phys. Rev. D 58, 116002 (1998);

S. R. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008 (1999).]

Non Minimal framework and higher-order models, d > 4, [R. C. Myers and

M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003); V. A. Kostelecky and M. Mewes, Phys. Rev. D 80, 015020 (2009);

Phys. Rev. D 85, 096005 (2012); M. Schreck, Phys. Rev. D 93, no. 10, 105017 (2016).]
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Alternatively, studies of CPT and Lorentz-invariance violation have been
given in

Modified dispersion relations [G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos,

D. V. Nanopoulos and S. Sarkar, Nature 393, 763 (1998).]

String/M theory [ V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989); V. A. Kostelecky and

R. Potting, Nucl. Phys. B 359, 545 (1991).]

Loop quantum gravity [R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999); J. Alfaro,

H. A. Morales-Tecotl and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); H. Sahlmann and T. Thiemann, Class.

Quant. Grav. 23, 867 (2006).]

Horava gravity [ P. Horava, Phys. Rev. D 79, 084008 (2009).]
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Beyond the Standard Model

In the effective framework one includes modified terms in the Lagrangian,
which can be classified according to its mass dimension d

S =

∫
d4x

(
LSM + δL(d=3,4) + δL(d=5) + . . .

)
. (1)

In particular, the Myers and Pospelov model [R. C. Myers and M. Pospelov Phys. Rev. Lett. 90,

211601 (2003)],

δL(5)
fermion =

1

mP
ψ̄(η1/n + η2/nγ5)(n · ∂)2ψ , (2)

and the standard model extension [V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83, 11 (2011),].

In general the Lorentz symmetry breakdown is implemented with a
preferred four vector n, which is believed to arise from expectation
values in an underlying theory.
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What to expect in the presence of Lorentz-invariance violation with
higher-order operators?

1) We may have more degrees of freedom (some become complex for
certain range of energies).

L(q, q̇, q̈) → πq̇ =
∂L

∂q̈
pq =

∂L

∂q̇
−
∂πq̇
∂t

(3)

2) Improved convergence properties.

∆ =
1

p2 −m2 − p4/M2
=

1

p2 −m2
1

− 1

p2 −m2
2

, (4)

For M > m we have two poles at p2 = m2 and p2 = M2.
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3) An indefinite metric in Hilbert space η, which in general leads to a
pseudo-unitary condition for the S matrix, i.e., S†ηS = η. [T. D. Lee and

G. C. Wick, Nucl. Phys. B9, 209 (1969); T. D. Lee, G. C. Wick, Phys. Rev. D2, 1033 (1970).]. Some years ago
Lee-Wick showed that unitarity can be preserved by requiring that
only positive metric particles be stable.

4) Non renormalizability, large Lorentz violations, modified asymptotic
Hilbert space.

In this talk we will show some approaches to prove unitarity and to study
renormalization in the presence of higher-order theories with Lorentz
violation.
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Perturbative Unitarity

Let us focus on the Myers-Pospelov Lagrangian

L = ψ̄(i /D −m)ψ + g ψ̄/n(n · ∂)2ψ − 1

4
FµνF

µν , (5)

where n is a privileged four-vector and g a small parameter. We fix
n = (1, 0, 0, 0) and from the dispersion relation we found the four solutions

ω1 =
1−

√
1− 4gE

2g
, ω2 =

1−
√
1 + 4gE

2g
,

W1 =
1 +

√
1− 4gE

2g
, W2 =

1 +
√
1 + 4gE

2g
,

where E =
√

p⃗2 +m2.
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Figure 2: The poles in the complex plane
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The optical theorem

The unitarity of the S-matrix and considering S = 1 + iT implies

−i(T − T †) = T †T . (6)

Between initial states |i⟩ and final states ⟨f | and inserting a complete set
of intermediate states ⟨m|, we rewrite the above equation as

⟨f |T |i⟩ − ⟨f |T † |i⟩ = i
∑
m

∫
dΠm ⟨f |T † |m⟩ ⟨m|T |i⟩ . (7)

We write Mfi −M∗
if = i

∑
m

∫
dΠmMfmM∗

im, and in the special case of
forward scattering f = i , we arrive at the unitarity condition

2 Im(Mii ) =
∑
m

∫
dΠm |Mim|2 . (8)
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Implementation: Lee-Wick prescription

In our modified QED we will check unitarity for the graph

Figure 3: The scattering diagram
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Some central points to satisfy the perturbative constraint are:

1) The sum over physical states in the amplitude diagram must be
carried only over positive metric states

2) In the loop diagram a suitable prescription for the path CLW is
needed to avoid the poles and to compute the residues

Figure 4: The path CLW
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The LHS of the unitarity condition is

M(p) =
−e4Jµ1 (p)J

ν
2 (p)

p4

∫
d3q

(2π)4
Tr

(
γµ(/R +m)γν( /Q +m)

)
I (q0.p0)

where Rµ = ((p0 + q0)(1− g(p0 + q0)), q⃗), J
µ
1 (p) = v̄ r (p2)γ

µus(p1) and
Jµ2 (p) = ūs(p1)γ

µv r (p2).
The important integral is

I (q0, p0) = −i

∫
CLW

dq0
g4(q0 − ω1)(q0 − ω2)(q0 −W1)(q0 −W2)

× 1

(q0 − p0 − ω1)(q0 − p0 − ω2)(q0 − p0 −W1)(q0 − p0 −W2)
.

We can compute the imaginary part of M(p) considering

Disc(M) = M(p0 + iϵ)−M(p0 − iϵ) = 2iImM(p0 + iϵ).
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The RHS of the unitarity condition is the amplitude A

A =
∑

phys→ω1,ω2

∑
r ,r ′

∫
d3k2
(2π)3

1

E2

d3k1
(2π)3

1

E1
(2π)4δ4(k2 + k1 − p)|M|2

where we have used the Lee-Wick prescription in order to sum only over
physical states. In the center of mass system one has

A =
e4Jµ1 (p)J

ν
2 (p)

p4

∫
d3k1d

3k2
(2π)22EN12EN2

Tr
(
γµ(γ

0E + γiki2 −m)

γν(γ
0E + γiki1 +m)

)
δ4(−ω1 + ω2 − p0)δ

3(k⃗1 + k⃗2).

Finally, by comparing both sides one is able to prove the unitarity
constraint for the considered one-loop scattering process.
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Renormalization and Lorentz violating asymptotic states

It has been shown that in the presence of Lorentz invariance violation new
operators induced via radiative corrections in the effective Lagrangians
may modify the pole masses of the two-point functions. [R. Potting, Phys. Rev. D 85,

045033 (2012); M. Cambiaso, R. Lehnert and R. Potting, Phys. Rev. D 90, no. 6, 065003 (2014)].

To explain the idea consider the standard Yukawa Lagrangian

L =
1

2
(∂ϕ)2 − 1

2
ϕ2 + λψ̄ϕψ + ψ(i /∂ −M)ψ , (9)

and let us compute the one-loop radiative correction to the scalar self
energy Σ2.

p+ k

k

p p

Figure 5: Scalar self energy
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The standard computation gives divergencies proportional to p2 and M2

which can be cancelled by counterterms.
One can write the two-point function (or Green function) as

G (p2) =
1

p2 −m2
R +Σ(p2)

, (10)

with
Σ(p2) = Σ2(p

2) + p2δϕ − (δϕ + δm)m
2
R , (11)

The on-shell conditions are

Σ(m2
Pole) = m2

R −m2
Pole ,

dΣ(p2)

dp2

∣∣∣∣∣
p2=m2

Pole

= 0 (12)

1) In the presence of Lorentz violations one has a different structure that
may lead to modifications in the renormalization conditions.
2) This can be generally proved at the non perturbative level with the
spectral density in the Kállén-Lehmann representation.
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Renormalization

Based on the work [J. R. Nascimento, A. Y. Petrov and C. M. Reyes, arXiv:1706.01466 [hep-th].]

We focus on the Lagrangian

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 + ψ̄ (i∂/−m)ψ + g2ψ̄n/(n · ∂)2ψ + g ψ̄ϕψ . (13)

We impose the simplification of considering m = M and choose the
preferred four-vector to be purely timelike n = (1, 0, 0, 0).

We have the usual dispersion relation for the scalar with solutions
p0 = ±E with E =

√
p⃗2 +m2, and the modified ones for the fermion

(p0 − g2p
2
0)

2 − p⃗2 −m2 = 0 , (14)
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The Yukawa-like model

The standard, that is, non-singular at g2 → 0, solutions are

ω1 =
1−

√
1− 4g2E

2g2
, ω2 =

1−
√
1 + 4g2E

2g2
, (15)

and the Lee-Wick ones

W1 =
1 +

√
1− 4g2E

2g2
, W2 =

1 +
√
1 + 4g2E

2g2
. (16)

The fermion propagator is

S(p) =
i
(
(p0 − g2p

2
0)γ

0 + piγ
i +m

)
g2
2 (p0 − ω1 + iϵ)(p0 −W1 + iϵ)(p0 − ω2 − iϵ)(p0 −W2 + iϵ)

,

(17)
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The Lee-Wick prescription

Figure 6: The Lee-Wick prescription

To define the contour C
(f )
F we use an heuristic argument. At energies

below the critical one we consider the Lee-Wick prescription which rounds
the negative pole from below and the three positive ones from above. Now
we define the new contour as the one obtained by continuously deforming
the curve such to avoid any crossing and singularity with the poles, as
shown in the above figure.
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Radiative corrections

p+ k

k

p p

Figure 7: Scalar self energy

Π(p) = −g2

2
ϕ(−p)ϕ(p)

∫
d4k

(2π)4
Tr ((Qµγ

µ +m)(Rνγ
ν +m))

(Q2 −m2)(R2 −m2)
, (18)

where we define

Qµ = kµ − g2nµ(n · k)2 ,
Rµ = kµ + pµ − g2nµ(n · (k + p))2 . (19)

Π(p) = Π(0) + pµ

(
∂Π

∂pµ

)
p=0

1

2
pµpν

(
∂2Π

∂pµ∂pν

)
p=0

+ . . . . (20)
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The contributions

Π(p) = −2g2m2q0 − 2g2p2q1 − 2g2(n · p)2qn , (21)

where

q0 = − i

48π2g2
2m

2
+

i

48π2

(
6γE − 0, 46 + 12iπ − 18 ln

(g2m
2

))
,

q1 = − i

2π2

(
iπ − ln

(g2m
2

)
− 1

3

)
,

qn =
i

π2
. (22)
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The contributions

p k p

k − p

Figure 8: Fermion self energy

The fermion self-energy graph is represented by the integral

Σ(p) = g2

∫
d4k

(2π)4
/Q +m

((k − p)2 −m2)(Q2 −m2)
. (23)

We find

Σ2 = g2/nf n1 + g2mf0 + g2
/pf1 + g2m(n · p)f n2

+ g2/n(n · p)f n3 + g2p2/nf n6 + g2(n · p)/pf n4 + g2(n · p)2/nf n5 . (24)
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The scalar pole mass

We start with

L =
1

2
∂µϕR∂

µϕR − 1

2
m2

Rϕ
2
R , (25)

Consider the renormalized two-point function

(Γ
(2)
R )−1 = p2 −m2

R +ΠR(p) , (26)

where

ΠR(p) = p2Aϕ +m2
RBϕ + (n · p)2Cϕ , (27)

and

Aϕ = −2g2q1 ,

Bϕ = −2g2q0 ,

Cϕ = −2g2qn . (28)
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The scalar pole mass

In order to find the pole we consider the ansatz

P̄2
ϕ = p2 −M2

ph + ȳ(n · p)2 , (29)

where Mph and ȳ are the unknown constants we want to find. We demand
the renormalized two-point function to satisfy the condition at P̄2

ϕ = 0

(Γ
(2)
R )−1(P̄2

ϕ = 0) = 0 , (30)

From (26) replacing the value of p2 given in (29) and using the condition
(30), we arrive at the equation

0 = M2
ph − ȳ(n · p)2 −m2

R + Aϕ

(
M2

ph − ȳ(n · p)2
)
+ Bϕm

2
R

+Cϕ(n · p)2 . (31)
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The scalar pole mass

Due to the independence of each term, and after some algebra, we find

M2
ph = m2

R

(1− Bϕ)

(1 + Aϕ)
, (32)

and

ȳ =
Cϕ

1 + Aϕ
. (33)
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Conclusions

QFT with higher-order Lorentz violation are intrinsically different
from the SME minimal models even at the tree level.

One can preserve unitarity at one loop order in higher-order Lorentz
violating theories using the Lee-Wick prescription.

UV divergences in some model as the Yukawa-like model are not
present and one can show the finiteness of the S-matrix.

Several works are planned for the near future: Kallen-Lehman
representation for higher-order theories, study of more models,
induced finite corrections (vertex).
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