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        LOW  DIMENSIONAL  QFTS      (including BLACK HOLES)  



All spherically symmetric solutions in GR turn out to be 
singular. 

Revista de la Universidad Nacional de Tucumán, A2 (1941) 11. 



Nakedness and censorship 

c.f., Τ. P. Singh, J. Astrophys. Astr. 20, 221 (1999) 



Under reasonable, generic, initial conditions in GR, singular 
solutions inevitably arise in GR (Penrose-Hawking theorem). 

A singularity represents a failure in the spacetime continuum, 
where the notion of geometry breaks down, the “normal” 
physical laws do not apply and it is no longer possible to 
predict the outcome of experiments. 

Singularities causally connected to us –naked singularities- 
give rise to serious conceptual problems: physics becomes 
unpredictable (useless). 

“Green slime, lost socks and broken TV sets could emerge 
from naked singularities”                         (J. Earman) 



Static Schwarzschild metric: 

ds2 = −(1− 2m
r )dt

2 + (1− 2m
r )

−1dr 2 + r 2dΩ2

For m>0 the horizon at r=2m hides the curvature singularity at r=0, 
implementing cosmic censorship. 

Event 
horizon 

t 
Singularity 

If m<0 there is no horizon, the curvature singularity at r=0 is a  
Naked Singularity (NS). 



CC seems to be true, but there is no proof of it.  
 

Christodoulu: Collapsing dust or scalar fields can form NSs.  
 

This, however, requires finely tuned initial conditions.  

 

The need of “fine tuning” suggests that NSs could be 
perturbatively unstable: can quantum mechanics rule out 
NSs? 
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  Intractable problem in 3+1 dimensions:  Go down to 2+1 



The 2+1 black hole 

M. Bañados, C.Teitelboim, J.Z. (1992) 



 

•   These spaces have the same constant negative  
   curvature (-l-2) for all values of M and J.  

•    2+1 black holes are spherically symmetric, stationary    
    solutions labeled by two constants of integration:  
    mass (M) and angular momentum (J).    

 All solutions of Einstein’s equations in 2+1dimensions 
are spacetimes of constant negative curvature: 

Rab + l−2eaeb = 0 (Rαβ

µν = −[δµ
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Black hole in 2+1 dimensions 
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ds2 = −(r2 −M )dt2 +
dr2

(r2 −M )
+ r2dφ2

Static case 
J=0 

 

M ≥ 0              BH; horizon at r+ =M ½  
 

M= –1             AdS spacetime (Λ= –1) 
     

  

 M<0               No horizon: Naked singularity 
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Spinning 2+1 black hole  
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Spectrum of rotating 2+1 BHs 

M=-1, J=0 

J 

NSs 

BH 

M

AdS 

Extremal M=|J| 

Vacuum, M=J=0 



How is a 2+1 BH made? 

M. Bañados, C.Teitelboim, M.Henneaux, J.Z. (1993) 



 

 
 
 
 
 
 
 
 
 
 
 

•   The 2+1 BHs are obtained by identifications in AdS2+1, defined  
    by the pseudoesphere 

k = 1
2 k

ab(xa∂b − xb∂a ) =
1
2 k

abJab ∈ so(2,2)

−(x0 )2 − (x1)2 + (x2 )2 + (x3)2 = −1

which has 6 Killing vectors: 

•   Not all Killing vectors yield BHs. 

Thus, the BH geometry is locally AdS (not globally) 

•   Identifying (quotienting) by up to two commuting Killing 
vectors does not change the   local  geometry: the 2+1 BHs are 
locally isometric to AdS2+1 



Identifications by Killing vectors respect the local geometry: 

R2/k1 

k1, k2, k3: isometries 

k1 
k2 

k3 

  r=0 fixed point of k3     
       conical singularity  

R2 

R2/k3 

 k1 leaves no fixed points   
          no singularities 



Boosting black holes 

 
 
 
 
 
 
 
 In particular, a static BH (M0≠0, J0=0) can be turned into  
 a spinning one (M≠0, J≠0) by a “Lorentz” boost:  
 
 
 
 
 

The freedom to make Lorentz transformations in AdS2+1 
can be exploited to boost the identifying Killing vectors. 
The resulting black holes have different M and J . 

M = 1+Ω2

1−Ω2 M 0 ,   J = 2Ω
1−Ω2 M 0 ,    M 2 − J 2 =M 0

2

 
         

      AdS2+1  , 
        k’ 

k’ = Λk       AdS2+1   
        k 



Spinning 2+1 black hole states 

M=-1, J=0 

J 

NS 

BH 

M
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Extremal M=|J| 

 M=J=0 

M2 – J2 = M0
2 •    M0 



Conical singularities 

O.Mišković, J.Z. (2009) 



Identification in the x1-x2 plane generates a conical singularity 
in the set of fixed points of the Killing vector:     

   k = -2πα (x2∂3
 – x3 ∂2)  

               = -2πα ∂φ 

    δ-like curvature 
    singularity 

Angular defect 

Angular defect in 2+1 D 

time 

1D Defect 

2πα 



 
A conical defect/excess in 2+1 dim. is a localized, static/stationary, 
spherically symmetric geometry.  
 
 
 

 A conical singularity is indistinguishable from a black hole at large  
 distance (like planets and black holes). 
 
 
 

 Unlike black holes, a conical singularity is not surrounded by an 
 event horizon           Naked Singularity (orbifold AdS3/k) 
   



The conical geometry looks like a BH:  
 

 

 

 

 

 
The exceptional cases are:  
                               anti-de Sitter; no deficit   
         zero mass; maximum deficit (2π) 
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For –1< M < 0 these are naked singularities that behave as point 
particles; quite harmelss otherwise. 

 

where the “mass” is negative,                           ,  and related to the 
deficit angle,                                               . 
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BH 

M 

M=0 

AdS: 
M= –1 
α=0  

NS 

2+1 BH-NS spectrum  

(J=0) 
 

NS 0≤ α ≤1: angular deficit  

α > 1: angular excess  

Like BHs, conical singularities can also acquire angular momentum… 



NSs with k·k<0:  

closed timelike curves! 

 2+1 BHs and NSs: extended spectrum  

J 

BH 

M 

Excesses 
(Antiparticles) 

Vacuum 

M2 -J2=1 

Defects 
(Partícles ) 



   Black hole identifications 
    AdS 2+1: 

 

 

 

 

 

 
 

 

•   Generic BH: r+ >r- >0, M>|J|≠0  
                                         α±=2r±  

−(x0 )2 − (x1)2 + (x2 )2 + (x3)2 = −1

•   Extremal BH: r+=r– > 0, M=J≠0 

•   Zero mass BH:  r+=r– =0, M=J=0 

These are all non-compact elements of  SO(2,2) 
•          ξ·ξ>0                  No closed timelike curves 
•  No fixed points          No conical singularities  

   

ξ0 =
1
2 (J12 + J03 + J02 − J13)

ξ
+−
=α

+
J12 −α−

J03

ξExt =α+
(J01 − J 23)+

1
2 (J12 + J03 + J02 − J13)



   Conical identifications 
    AdS 2+1: 
 

 
     

 

 

 

 

 

 

 

 

 

•   Generic spinning cone,  M<-|J|≠0 
  

•   Extremal cone,  M=-|J|≠0 

•   Zero mass cone, M=J=0. 

ξ
+−
= β

+
J01 + β

−
J 23

ξ0 =
1
2 (J12 + J 20 + J03 + J31)

β
±
= −M + J ± −M − J

ξExt = β
+
(J01 − J 23)+

1
2 (J12 + J01 + J 23 − J13)

−(x0 )2 − (x1)2 + (x2 )2 + (x3)2 = −1

These are all compact elements of  SO(2,2) 
•          ξ·ξ>0                   No closed timelike curves 
•  r = 0 fixed point        Conical singularity 

   



Quantum effects 

M.Casals, A.Fabbri, C.Martínez, J.Z. (2016, 2017) 



Quantization 
 

In 2+1 dimensions GR has no local degrees of freedom 
§  No gravity waves  
§  No gravitons         no gravitational quantum corrections.  
 

    Hence, the only quantum effects may be due to matter.  
 

Strategy: 
è  Consider a conformally(*) coupled scalar field     , with 
      transparent boundary conditions. 



è  Compute the renormalized stress-energy tensor            for the 
     quantum fluctuations around                                  .  
 

è  Compute the modified geometry (back-reaction). 
 
(*) Enormous simplification. Exact solutions; no tail; analytic results 

φ̂

gµν = gµν ,  φ̂ = 0
T µ

 ν



  Renormalized Stress-Energy Tensor (RSET): 
 

Since the BH and the conical geometries are obtained by identifications 
in the AdS covering space, the stress-energy tensor can be obtained 
from the one in the embedding spacetime by the method of images. 
 
 

In the covering space the RSET for a conformally coupled scalar is 
 
 
 

 
 

where G(x’,x) is the two-point function, 
 
 
 

and                                                     is the geodesic distance measured 
in the embedding space. 
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Method of images: 
 
 

 
 
 
 

where H(ξ) is the matrix corresponding to the identification vector ξ .  
 

For the generic (spinning) BH,  
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HBH(ξ) = 

α
±
= M + J ± M − J

The two-point function in the BH/cone can be obtained by applying the 
identification operator to x’ : 



Method of images: 
 
 

Similarly, for the generic (spinning) cone,  
 

 
 
 
 

   
 

  
  
 
 

 where                              .  
 

 With these matrices, can compute Hn and finally          . 
  
N.B.: The conical geometry is obtained from the BH by analytic 
 

          continuation     M       -M 
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A (very long!) direct and calculation yields, for a massless scalar 
field on a static BH (J=0) 
 
 
 
 
 

and on the static conical singularity, 
 
 
 
 
 

which corresponds to the analytic continuation  M   –M . 
 
 

In both cases,                            . 
 

κ T̂ µ

ν

BH

= lPM
3/2

2 2r3
n=1

∞

Σ cosh(2nπ M )+3
[cosh(2nπ M )−1]3/2 diag (1,1, −2) ,

κ T̂ µ

ν

NS

= lP (−M )3/2

2 2r3
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N0
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[cos(2nπ −M )−1]3/2 diag (1,1, −2) ,

T µ
 ν = F (M )
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(lP=ħG)  

why? 



 

The summation       results from the fact that these geometries are 
 

 multiply connected.  
 

•   For the BH there are infinitely many null geodesics connecting a 
     point to itself, N = ∞.  
 
 
 
•   In a conical geometry, the number or self-intersecting null paths is   
     finite and depends on the angular deficit at the apex of the cone:  
 

  N0 = [1- Δ/(2π)]-1=[-M]-1/2 
 
 
 
 
 
 
 
 
 

n=1
Σ

BH 



These contributions to the stress-energy modify Einstein’s equations,  
and change the geometry.  A direct calculation in both cases gives  
 
 
 
 
where F(M) ~ O(ħ) > 0.  

Effect of quantum 
corrections 

ds2 = − r 2 −M − F (M )
r( )dt 2 + r 2 −M − F (M )

r( )
−1

dr 2 + r 2dθ 2

The modified geometries have a horizon both for M > 0 and  M < 0, 
since 
 
always has real solutions for F(M) >0. 

r 2 −M − F (M )
r = 0

No matter how large the conical defect is, the quantum corrections 
of the vacuum end up dressing the naked singularity.  



r2-M,  M>0 

F (M )
r

r+ 

r
+

2
− M = F (M )

r+

The horizon for the BH grows as a 
consequence of the quantum 
corrections, δr+~lP > 0. 



M<0 

F (M )
r

r+ 

The horizon for the BH grows as a 
consequence of the quantum 
corrections, δr+~lP > 0. 

r+ 

The quantum corrections generate a horizon for the 
conical singularity, dressing up its nakedness, rNS

+>0. 
The naked singularity becomes a black hole. 

r2-M,  M>0 

r
+

2
− M = F (M )

r+



Caveat: 
 
A static BH is an extremely exeptional case: it would 
require infinitely fine-tuned initial conditions to produce 
one by collapsing matter. 
 
Similarly, a NS corresponding to a real particle is likely 
to have nonvanishing spin. 
 
Will our results survive if the BH or NS were not exactly 
static? 
 
(Our conclusions may be accidentally due to the 
exceptional fine-tuned static case. The horizon could go 
away if the BH / NS have nonzero angular momentum...) 



Are our conclusions still valid for J ≠ 0 ? 
  

This is a difficult question. There are several different 
cases to be considered, depending on the regions 
connected by the geodesics in a rotating BH: 
 

 0 < r < r-  ,       r- < r < r+  ,     r+< r < ∞   
 

For a spinning conical singularity life is even harder. 
 

Problem of resonance: If β+= (rational) x β-, then (HCone)n  
becomes proportional to the identity and          blows up!  
 

Luckily, this happens for angular momentum above a 
finite threshold,  J>J* 
 

(See arXiv:1608.05366 [PRL (2017)] and forthcoming paper.) 

T µ
 ν



Classical BTZ black hole: 
The two horizons at radii        
and     respectively.

Quantum-corrected black hole: The 
outer horizon is slightly larger than its 
classical counterpart,                       . 
A hard surface forms at the inner 
horizon     . 

·

r+

r- ·

r(q)
+

r-

r+
r- r(q)

+=r+ + O(ħ) 

r-

spin spin

Backreacted BH geometry (J ≠ 0) 



·
Infinite curvature, 
naked  singularity

r(q)
+ ~O(ħ)

Classical naked singularity: 
No horizon surrounds the 
conical singularity.

Quantum-corrected singularity: 
A horizon forms around the 
conical singularity so that for an 
external observer it looks like a 
black hole. 

spin spin

Backreacted NS geometry (J ≠ 0) 



Summary 



The quantum corrections produce a horizon around the 
otherwise naked singularity. 

   Black holes (M ≥ |J|) and conical geometries (M ≤-|J|)   
  are complementary parts of the 3D BH spectrum 

Including a quantum scalar field makes the BH horizon 
grow, rq

+> rc
+ .

Cosmic censorship is a result of quantum mechanics. 

These effects hold for generic spinning BHs and NSs. 



Quantum effects not only prevent the collapse of the 
electron into the atomic nucleus, they prevent the 
formation of naked singularities. They could also provide 
mechanisms to avoid other singularities, like the BB. 
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It seems that Einstein was right after all: Nature does 
abhor singularities.  
 
This is not, however, a feature of the classical theory, but 
the result of a quantum effect. 
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It seems that Einstein was right after all: Nature does 
abhor singularities.  
 
This is not, however, a feature of the classical theory, but 
the result of a quantum effect. 

Feliz cumpleaños, Marcelo! 


