Forecasting with foregrounds: searching for optimal spectral distortion mission configurations

Max Abitbol Spectral Distortions Workshop CERN Theory Institute March 15, 2018

Overview

- Prospects for Measuring Cosmic Microwave Background Spectral Distortions in the Presence of Foregrounds.
 - Abitbol, Chluba, Hill, and Johnson, MNRAS 471, 1 (2017).
 - <u>doi.org/10.1093/mnras/stx1653</u>

Overview

- Spectral distortion sensitivity forecasts, with known foregrounds, for PIXIE and PRISTINE.
 - Previous forecasts did not include detailed foreground modeling.
 - MCMC and Fisher methods to estimate bias and uncertainties.
- Varied mission parameters to maximize spectral distortion detection.

Uncertainty Estimation

- Fisher:
 - Parametric modeling.
 - Turn experiment sensitivity into parameter uncertainties.
- CMB Signals:
 - CMB monopole temperature, y distortion, relativistic correction to y distortion, and mu distortion.
- Foregrounds:
 - Thermal dust, cosmic infrared background, synchrotron, free-free, spinning dust, integrated CO.

Spectral Distortion Signals

 $\Delta T/T = 1.2 \times 10^{-4}$, y = 1.77x10⁻⁶, kT_{eSZ} = 1.245 keV, $\mu = 2 \times 10^{-8}$

PIXIE Example

- Absolutely calibrated Fourier transform spectrometer.
- 15 6,000 GHz frequency coverage, 15 GHz channel width.
 - Center Frequencies:
 - 15, 30, 45, 60, ..., 6000 GHz
 - Band Edges:

7.5 – 22.5, 22.5 – 37.5, 37.5 – 52.5 GHz, etc.

PIXIE Sensitivity

Foregrounds

Fisher Uncertainty Estimation

 $F_{ij} = \sum_{a,b} \frac{\partial (\Delta I_{\nu})_a}{\partial p_i} C_{ab}^{-1} \frac{\partial (\Delta I_{\nu})_b}{\partial p_j}$

Forecast with Foregrounds

Mu detection – CMB only

Relativistic SZ detection – CMB only

Mu detection – with foregrounds

Relativistic SZ detection – with foregrounds

Mu detection – increasing sensitivity

PRISTINE

- Proposed FTS spectral distortion mission .
 PIXIE-like
- Possible options:
 - 30 1000 GHz, 3 GHz spacing
 - 60 1000 GHz, 3 GHz spacing
 - 60 2000 GHz, 5 GHz spacing
 - 90 2000 GHz, 5 GHz spacing

Y detection – PRISTINE configurations

Relativistic SZ detection – PRISTINE

Conclusions

- Foregrounds dominate spectral distortions signals.
 - Low frequency (10 100 GHz) sensitivity is important to detect mu.
 - High frequencies (100 GHz 2THz) is needed for y and the relativistic correction.
- PIXIE detects y and the relativistic correction with high significance even with foregrounds.
- Future Work:
 - More general instrument optimization.
 - Super PIXIE could detect mu.
 - Spatial information is not yet included!