Extracting anisotropic μ-type spectral distortions

Mathieu Remazeilles

Remazeilles & Chluba
arXiv:1802.10101

“Probing fundamental physics with CMB spectral distortions”
CERN TH Institute, 12-16 Mar 2018
µ-type CMB spectral distortions

At redshifts $10^4 < z < 2 \times 10^6$ (pre-recombination), energy injections into primordial plasma prevent brehmsstrahlung and double Compton scattering to create photons to maintain Planck's equilibrium, leading to Bose-Einstein equilibrium:

$$n_{BE} \approx n_{PI} + \mu \frac{e^x}{(e^x - 1)^2} \left(\frac{x}{2.19} - 1 \right)$$

$x \equiv h \nu / k T_{CMB}$

Caused by exciting physics processes occurring at redshifts $z > 10^4$:

\rightarrow dissipation of small-scale acoustic modes $-$ Silk 1968

\rightarrow annihilation/decay of relic particles $-$ Hu & Silk 1993

\rightarrow evaporation of primordial black holes $-$ Carr et al 2010

LCDM predicts: $|\mu| = 2.3 \times 10^{-8} \rightarrow$ very faint signal! $-$ Chluba 2016

COBE/FIRAS constraint: $|\mu| < 9 \times 10^{-5}$ $-$ Fixsen et al 1996
Anisotropic \(\mu \)-type distortions

Aside from CMB monopole distortions...

Primordial non-Gaussianity in the ultra-squeezed limit predicts:

- **Anisotropies of \(\mu \)-type distortions** (*spectral-spatial distortions*):

 \[
 C_{\ell}^{\mu \times \mu} = 144 \ C_{\ell}^{TT, SW} \ f_{NL}^2 \ <\mu>^2.
 \]

- **\(\mu \)-T correlations** between CMB temperature and \(\mu \)-distortion anisotropies:

 \[
 C_{\ell}^{\mu \times T} = 12 \ C_{\ell}^{TT, SW} \ \rho(\ell) \ f_{NL} \ <\mu>.
 \]

- **Scale-dependent** \(f_{NL}(k) = f_{NL}(k_0)(k/k_0)^{n_{NL^{-1}}} \) with running index of \(n_{NL} \leq 1.6 \) would allow for:

 \[
 f_{NL}(k_0 = 0.05 \text{ Mpc}^{-1}) \approx 5 \quad \leftarrow \text{CMB temperature anisotropies}
 \]

 \[
 f_{NL}(k = 740 \text{ Mpc}^{-1}) \approx 4500 \quad \leftarrow \text{\(\mu \)-type distortion anisotropies}
 \]

\(k_s \sim 10^2 - 10^4 \text{ Mpc}^{-1} \)

\(k_L \sim 10^{-3} \text{ Mpc}^{-1} \)
Questions

- Can we detect the μ-T correlated signal with future CMB satellites?

- What limit on $f_{NL} (k=740 \text{ Mpc}^{-1})$ can be achieved in the presence of foregrounds?
Spectral signature of distortions

Distinct spectral signatures!

Multi-frequency observations allow (in principle) to disentangle those signals
CMB satellite concepts

- **LiteBIRD (JAXA)**
 - Matsumura et al., 2013
 - 40 – 402 GHz; 2.5 μK.arcmin

- **PIXIE (NASA?)**
 - Kogut et al., 2011
 - 30 – 6000 GHz; 6.6 μK.arcmin (Δν=30 GHz)

- **CORE (ESA? ISRO?)**
 - Delabrouille et al., 2017
 - 60 – 600 GHz; 1.7 μK.arcmin

- **PICO (NASA?)**
 - S. Hannany, priv. comm.
 - 21 – 800 GHz; 1.1 μK.arcmin
Anisotropic primordial spectral distortions

Similar dynamic range between signal and foregrounds than primordial B-modes at $r \sim 10^{-3}$

→ to be definitely considered by future CMB satellites...
Anisotropic primordial spectral distortions

μ-T correlation signal between CMB temperature and μ-distortion anisotropies

\to even more accessible signal, allowing to constrain $f_{NL}(k \approx 740 \, \text{Mpc}^{-1})$

\to to be definitely considered by future CMB satellites...
Cosmic history of CMB spectral distortions
The problem of foregrounds

\[z > 10^4 \]

Chluba 2014

\(\mu \)-type spectral distortions open a new window to probe physics occurring behind the last-scattering surface, where the universe is invisible!
The problem of foregrounds

$z \approx 10^3$

CMB last-scattering surface (foreground)

$0 < z < 10^3$

SZ clusters (foreground)

$z > 10^4$

cosmological signal

μ-type spectral distortions open a new window to probe physics occurring behind the last-scattering surface, where the universe is invisible!
The problem of foregrounds

Chluba 2014

$z \approx 10^3$

CMB last-scattering surface (foreground)

$0 < z < 10^3$

SZ clusters (foreground)

$z = 0$

Galactic foregrounds

μ-type spectral distortions open a new window to probe physics occurring behind the last-scattering surface, where the universe is invisible!
Component separation: the problem

\(\mu\)-distortion anisotropies

Angular power spectrum

\(\ell, \ell'\) - multipole

\(\mu K_{\text{CMB}}\)
Component separation: the problem

μ-distortion + CMB temperature anisotropies

Angular power spectrum

$\ell \langle l+1 \rangle C_\ell \propto 2\pi$

CMB
Component separation: the problem

\(\mu \text{-distortion + CMB + SZ} \)
Component separation: the problem

\(\mu \)-distortion + CMB + SZ + Galactic

Angular power spectrum

\[\ell (\ell + 1) C_\ell / 2\pi \]

Multipole \(\ell \)

- CMB
- SZ
- Galactic
Component separation: the problem

μ-distortion + CMB + SZ + Galactic + noise

Angular power spectrum

ℓ-dependence of the power spectrum

- CMB
- SZ
- Galaxy
- Noise
Sky observation at frequency ν and pixel n:

$$X_\nu(n) = a_\nu S_{\text{CMB}}(n) + b_\nu S_{\text{SZ}}(n) + N_\nu(n)$$

Minimum-variance weighted linear combination of the frequency maps:

$$\hat{S}_{\text{CMB}}(n) = \sum w_\nu X_\nu(n)$$

where

- variance $<\hat{s}^2>$ minimum
- $\sum w_\nu a_\nu = 1$

Standard ILC

$$W = \frac{a^t C^{-1}}{a^t C^{-1} a}$$

Benett et al, 2003

Tegmark et al, 2003

Eriksen et al, 2004

Delabrouille et al, 2009
Standard ILC

Sky observation at frequency ν and pixel n

$$X_{\nu}(n) = a_{\nu} S_{\text{CMB}}(n) + b_{\nu} S_{\text{SZ}}(n) + N_{\nu}(n)$$

“foregrounds + noise”

Minimum-variance weighted linear combination of the frequency maps:

$$\hat{S}_{\text{SZ}}(n) = \sum w_{\nu} X_{\nu}(n)$$

where

$$\sum w_{\nu} b_{\nu} = 1$$

$$\text{variance } <\hat{s}^2> \text{ minimum}$$

Standard ILC

$$W = \frac{b^t C^{-1}}{b^t C^{-1} b}$$

Benett et al, 2003
Tegmark et al, 2003
Eriksen et al, 2004
Delabrouille et al, 2009
Constrained ILC

Sky observation at frequency ν and pixel n

$$X_\nu(n) = a_\nu S_{\text{CMB}}(n) + b_\nu S_{\text{SZ}}(n) + N_\nu(n)$$

where

$$\hat{S}_{\text{CMB}}(n) = \sum w_\nu X_\nu(n)$$

with orthogonality constraint to kill SZ contamination

$\sum w_\nu a_\nu = 1$

$\sum w_\nu b_\nu = 0$

Constrained ILC

$$W = \frac{(b^t C^{-1} b) a^t C^{-1} - (a^t C^{-1} a) b^t C^{-1}}{(a^t C^{-1} a) (b^t C^{-1} b) - (a^t C^{-1} b)^2}$$

Standard ILC

input thermal SZ

input kinetic SZ

input CMB

\[w = \frac{a^t C^{-1}}{a^t C^{-1} a} \]

Standard ILC

Input thermal SZ

Input kinetic SZ

Input CMB

Error: ILC - CMB

Thermal SZ residuals!
(clusters in the CMB)

\[w = \frac{a^t C^{-1}}{a^t C^{-1} a} \]

Constrained ILC

input thermal SZ

input kinetic SZ

input CMB

error: Constrained ILC - CMB

\[w = \frac{(b^\dagger C^{-1} b) a^\dagger C^{-1} - (a^\dagger C^{-1} a) b^\dagger C^{-1}}{(a^\dagger C^{-1} a) (b^\dagger C^{-1} b) - (a^\dagger C^{-1} b)^2} \]

Extracting foreground-obscured \(\mu \)-anisotropies

\[
data(\nu;n) = \mu + T + \text{(foregrounds+noise)}
\]

- \(\text{CMB } T \) anisotropies is a significant foreground to \(\mu \)-distortion anisotropies
- \textbf{Most sneaky, the CMB } T \text{ foreground is also correlated with the } \mu \text{ signal!}
- \textbf{If residual } T \text{ anisotropies are left in the reconstructed } \mu \text{-distortion signal after component separation}

\[
\hat{\mu} = \mu + \varepsilon_1 T + \varepsilon_2 \text{(foregrounds+noise)}
\]

then the \(\mu \)-\(T \) \textit{correlation signal} will be biased by \textit{spurious } TT \textit{ correlations}:

\[
\hat{\mu} \times \hat{T} = \mu \times T + \varepsilon_1 TT + \ldots
\]

\textit{Remazeilles & Chluba (2018) }\rightarrow \textit{our solution: use the “Constrained ILC” approach}
CMB-free μ-distortion reconstruction

$$X(\nu;n) = a_\mu(\nu) \mu(n) + a_T(\nu) T(n) + N(\nu;n)$$

Constrained ILC estimate:

$$\hat{\mu}(n) = \sum_\nu w(\nu) X(\nu;n)$$

such that

$$\begin{cases} \text{variance } \langle \mu^2 \rangle \text{ minimum} & (1) \\ \sum_\nu w_\nu a_\mu(\nu) = 1 & (2) \\ \sum_\nu w_\nu a_T(\nu) = 0 & (3) \end{cases}$$

orthogonality constraint to kill CMB T contamination
CMB-free μ-distortion reconstruction

$$X(\nu; n) = a_{\mu}(\nu) \mu(n) + a_{T}(\nu) T(n) + N(\nu; n)$$

sky observation at frequency ν and pixel n

μ SED μ-distortion anisotropies CMB SED CMB temperature anisotropies foregrounds + noise

Constrained ILC estimate:

$$\hat{\mu}(n) = \sum_{\nu} w(\nu) X(\nu; n)$$

such that

\[
\begin{cases}
\text{variance } <\mu^2> \text{ minimum} & (1) \\
\sum_{\nu} w_{\nu} a_{\mu}(\nu) = 1 & (2) \\
\sum_{\nu} w_{\nu} a_{T}(\nu) = 0 & (3)
\end{cases}
\]

orthogonality constraint to kill CMB T contamination

$$\hat{\mu}(n) = \left(\sum_{\nu} w_{\nu} a_{\mu}(\nu) \right) \mu + \left(\sum_{\nu} w_{\nu} a_{T}(\nu) \right) T + \sum_{\nu} w_{\nu} N_{\nu}$$

$$\left\{ \begin{array}{c}
= 1 \\
= 0 \\
\text{minimized}
\end{array} \right\}$$

Remazeilles & Chluba (2018)
CMB-free μ-distortion reconstruction

$$X(\nu;n) = a_\mu(\nu) \mu(n) + a_T(\nu) T(n) + N(\nu;n)$$

- Sky observation at frequency ν and pixel n
- μ SED
- μ-distortion anisotropies
- CMB SED
- CMB temperature anisotropies
- Foregrounds + noise

Constrained ILC estimate:

$$\hat{\mu}(n) = \sum_\nu w(\nu) X(\nu;n)$$

such that

$$\begin{cases}
\text{variance } <\mu^2> \text{ minimum} & (1) \\
\sum_\nu w(\nu) a_\mu(\nu) = 1 & (2) \\
\sum_\nu w(\nu) a_T(\nu) = 0 & (3)
\end{cases}$$

Orthogonality constraint to kill CMB T contamination

$$\hat{\mu}(n) = (\sum_\nu w(\nu) a_\mu(\nu)) \mu + (\sum_\nu w(\nu) a_T(\nu)) T + \sum_\nu w(\nu) N_\nu$$

- $= 1$ (2)
- $= 0$ (3)
- Minimized (1)

Remazeilles & Chluba (2018)
CMB-free μ-distortion reconstruction

$$X(\nu;n) = a_\mu(\nu)\mu(n) + a_T(\nu)T(n) + N(\nu;n)$$

Sky observation at frequency ν and pixel n

- μ SED
- μ-distortion anisotropies
- CMB SED
- CMB temperature anisotropies
- Foregrounds + noise

Constrained ILC estimate:

$$\hat{\mu}(n) = \sum_{\nu} w(\nu) X(\nu;n)$$

such that

1. Variance $\langle \mu^2 \rangle$ minimum
2. $\sum_{\nu} w(\nu) a_\mu(\nu) = 1$
3. $\sum_{\nu} w(\nu) a_T(\nu) = 0$ (orthogonality constraint to kill CMB T contamination)

$$\rightarrow \hat{\mu} \times \hat{T} = \mu \times T + \varepsilon_1 T T + \ldots$$

Remazeilles & Chluba (2018)
CMB-free μ-distortion reconstruction

$$X(\nu;n) = a_\mu(\nu) \mu(n) + a_T(\nu) T(n) + N(\nu;n)$$

- sky observation at frequency ν and pixel n
- μ SED
- μ-distortion anisotropies
- CMB SED
- CMB temperature anisotropies
- foregrounds + noise

Constrained ILC estimate:

$$\hat{\mu}(n) = \sum_\nu w(\nu) X(\nu;n)$$

such that

1. variance $\langle \mu^2 \rangle$ minimum
2. $\sum w_\nu a_\mu(\nu) = 1$
3. $\sum w_\nu a_T(\nu) = 0$

Solution:

$$W = \frac{(a_T^t C^{-1} a_\mu^t) a_\mu^t C^{-1} - (a_T^t C^{-1} a_\mu^t) a_T^t C^{-1}}{(a_\mu^t C^{-1} a_\mu^t)(a_T^t C^{-1} a_T) - (a_\mu^t C^{-1} a_T)^2}$$

Remazeilles & Chluba (2018)
Simulation of correlated μ and T fields

\[C_{\ell}^{TT} \]

6 orders of magnitude!

\[C_{\ell}^{\mu \times T} \]

\[f_{\text{NL}} = 4500, \langle \mu \rangle = 2 \times 10^{-8} \]

Ravenni et al (2017)
Simulation of correlated μ and T fields

Remazeilles & Chluba (2018)
Our sky simulations (e.g. LiteBIRD)

\[\langle \mu \rangle = 2 \times 10^{-8} \]
\[f_{NL} = 4500 \]

\(\mu_{\text{CMB}} \)
Constrained ILC μ-map reconstruction (LiteBIRD)

Remazeilles & Chluba (2018)
Constrained ILC μ-map reconstruction (LiteBIRD)

Remazeilles & Chluba (2018)

significant foreground contamination
Constrained ILC \(\mu \)-map reconstruction (LiteBIRD)

\(f_{NL} = 10^4 \)

\(f_{NL} = 10^5 \)

\(f_{NL} = 10^6 \)

significant foreground contamination

Remazeilles & Chluba (2018)
Constrained ILC μ-map reconstruction (LiteBIRD)

This is actually $\mu\mu$. What about $\mu \times T$?

Remazeilles & Chluba (2018)
$C_\ell^{\mu-x_T}$ reconstruction: $f_{NL} = 4500$ (w/o foregrounds)

Remazeilles & Chluba (2018)
$C_\ell^\mu T$ reconstruction: $f_{\text{NL}} = 4500$ (with foregrounds)

Remazeilles & Chluba (2018)
$C_\ell^\mu T$ reconstruction: $f_{NL} = 4500$ (with foregrounds)

Remazeilles & Chluba (2018)
$C_{\ell}^{\mu \times T}$ reconstruction: $f_{NL} = 10^4$ (with foregrounds)

Remazeilles & Chluba (2018)
$C_\ell^\mu \times T$ reconstruction: $f_{NL} = 10^5$ (with foregrounds)
Standard ILC vs Constrained ILC

In light of these considerations, the constraints on μT from Planck data (Khatri & Sunyaev 2015) should be taken cautiously.
Forecasts on primordial non-Gaussianity

Table 5. Detection forecasts on $f_{\text{NL}}(k \approx 740 \text{ Mpc}^{-1})$ after component separation, based on multipoles $2 \leq \ell \leq 200$.

<table>
<thead>
<tr>
<th>f_{NL} (fiducial)</th>
<th>10^5</th>
<th>10^4</th>
<th>4500</th>
<th>4500 w/o foregrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIXIE</td>
<td>$(1.11 \pm 0.40) \times 10^5$</td>
<td>$(2.17 \pm 3.90) \times 10^4$</td>
<td>$(1.5 \pm 3.9) \times 10^4$</td>
<td>4778 ± 3868</td>
</tr>
<tr>
<td></td>
<td>2.5σ</td>
<td>$-\sigma$</td>
<td>$-\sigma$</td>
<td>1.2σ</td>
</tr>
<tr>
<td>LiteBIRD</td>
<td>$(0.98 \pm 0.08) \times 10^5$</td>
<td>$(0.91 \pm 0.68) \times 10^4$</td>
<td>4272 ± 6788</td>
<td>4753 ± 930</td>
</tr>
<tr>
<td></td>
<td>12.5σ</td>
<td>1.5σ</td>
<td>$-\sigma$</td>
<td>4.8σ</td>
</tr>
<tr>
<td>CORE</td>
<td>$(0.97 \pm 0.08) \times 10^5$</td>
<td>$(1.35 \pm 0.74) \times 10^4$</td>
<td>5692 ± 6397</td>
<td>4336 ± 653</td>
</tr>
<tr>
<td></td>
<td>12.5σ</td>
<td>1.4σ</td>
<td>$-\sigma$</td>
<td>6.9σ</td>
</tr>
<tr>
<td>PICO</td>
<td>$(0.99 \pm 0.06) \times 10^5$</td>
<td>$(1.07 \pm 0.30) \times 10^4$</td>
<td>5094 ± 2929</td>
<td>4480 ± 371</td>
</tr>
<tr>
<td></td>
<td>17.8σ</td>
<td>3.3σ</td>
<td>1.5σ</td>
<td>12.1σ</td>
</tr>
</tbody>
</table>

Remazeilles & Chluba (2018)
Forecasts on primordial non-Gaussianity

Table 5. Detection forecasts on $f_{NL}(k \approx 740 \text{ Mpc}^{-1})$ after component separation, based on multipoles $2 \leq \ell \leq 200$.

<table>
<thead>
<tr>
<th>f_{NL} (fiducial)</th>
<th>10^5</th>
<th>10^4</th>
<th>4500</th>
<th>4500 w/o foregrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5σ</td>
<td>12.5σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIXIE</td>
<td>$(1.11 \pm 0.40) \times 10^5$</td>
<td>$(2.17 \pm 3.90) \times 10^4$</td>
<td>$(1.5 \pm 3.9) \times 10^4$</td>
<td>4778 ± 3868</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiteBIRD</td>
<td>$(0.98 \pm 0.08) \times 10^5$</td>
<td>$(0.91 \pm 0.68) \times 10^4$</td>
<td>4272 ± 6788</td>
<td>4753 ± 930</td>
</tr>
<tr>
<td></td>
<td>12.5σ</td>
<td>1.5σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORE</td>
<td>$(0.97 \pm 0.08) \times 10^5$</td>
<td>$(1.35 \pm 0.74) \times 10^4$</td>
<td>5692 ± 6397</td>
<td>4336 ± 653</td>
</tr>
<tr>
<td></td>
<td>12.5σ</td>
<td>1.4σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICO</td>
<td>$(0.99 \pm 0.06) \times 10^5$</td>
<td>$(1.07 \pm 0.30) \times 10^4$</td>
<td>5094 ± 2929</td>
<td>4480 ± 371</td>
</tr>
<tr>
<td></td>
<td>17.8σ</td>
<td>3.3σ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PICO is in the best position to detect the μ-T correlation signal at $f_{NL}(k=740 \text{ Mpc}^{-1}) \lesssim 4500$ in the presence of foregrounds
Despite a very broad frequency coverage, PIXIE results on anisotropic μ are of poorer quality than those from PICO, CORE, LiteBIRD

Why?! → because of lower sensitivity and lower spatial resolution

- We find that increasing PIXIE resolution from 96' to 40', while keeping the baseline sensitivity, would improve $\sigma(f_{NL})$ by 50%

 → high-resolution channels enable using more spatially correlated information to improve foreground cleaning

- If the foreground complexity can be captured by, say, 10 degrees of freedom, then 15-20 frequency bands are enough to remove the foregrounds

 → *In this case, the most sensitive experiments will make a difference in the ILC trade-off of minimizing the balance between foreground and noise contamination*

- If the foreground complexity relies on more than 20 degrees of freedom, then the broad frequency range of PIXIE will make a difference with respect to imagers
In the absence of μ-distortion anisotropies, the reconstruction by Constrained ILC is consistent with $f_{NL} = 0$.\)

μ-T reconstruction for $f_{NL} = 0$

$\mu = 2 \times 10^{-8}$

Remazeilles & Chluba (2018)
Table 6. Detection limits for PICO on $f_{NL}(k \approx 740 \text{ Mpc}^{-1})$ after component separation, based on the multipole range $2 \leq \ell \leq 500$ using the model of Ravenni et al. (2017) to describe the $\mu - T$ cross-correlation. Foregrounds are included in all cases and the fiducial f_{NL} parameter was varied.

<table>
<thead>
<tr>
<th>f_{NL} (fiducial)</th>
<th>-4500</th>
<th>0</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICO</td>
<td>-2996 ± 2112</td>
<td>1325 ± 2114</td>
<td>5698 ± 2121</td>
</tr>
<tr>
<td>2σ</td>
<td>$-\quad$</td>
<td>2σ</td>
<td>\quad</td>
</tr>
</tbody>
</table>

Minimum detection limit by PICO in the presence of foregrounds:

$$|f_{NL}| \leq 2114$$

Remazeilles & Chluba (2018)
More detectors or more frequencies?

“Super-LiteBIRD” with 100 x more detectors
40 – 400 GHz, 0.2 µK.arcmin

PICO baseline
20 – 800 GHz, 0.8 µK.arcmin

Extended frequency coverage at frequencies ν ≤ 40 GHz and ν ≥ 400 GHz provides more leverage than increased channel sensitivity

Remazeilles & Chluba (2018)
What part of the frequency range matters?

- Discarding PICO frequencies above $\nu > 400$ GHz degrades our component separation results by $\sim 7\%$

- Discarding PICO frequencies below $\nu < 40$ GHz degrades our component separation results by $\sim 30\%$

\textit{Low-frequencies $\nu \leq 40$ GHz have more constraining power for μ-distortion anisotropies than high-frequencies above $\nu \geq 400$ GHz}

\textit{Remazeilles & Chluba (2018)}

\rightarrow consistent with the conclusions of \textit{Abitbol et al (2017)} for monopole distortions
Impact of inter-calibration errors

“Calibration errors can screw up the ILC in the high signal-to-noise regimes, through partial cancellation of the variance of the CMB temperature map”

The allowed inter-channel calibration uncertainty for PICO is 0.01 %
(The promise of CORE is to achieve such calibration accuracy)
Averaging effects

Because of averaging different line-of-sight SEDs within a pixel/beam, the actual SED of foregrounds in the maps will differ from the physical SED in the sky — Chluba et al 2017

Spurious SED curvatures created by pixel averaging effects, if ignored in the parametric fit, have been shown to bias primordial B-modes at the level of $\Delta r \sim 10^{-3}$ — Remazeilles et al 2017, for the CORE collaboration

The “Constrained ILC” is blind (no parametrization / assumption on foregrounds), so fairly insensitive to averaging effects
Conclusions

We have computed the first forecasts on the detection of the \(\mu\)-\(T\) correlation signal and \(f_{\text{NL}}(k\approx740 \text{ Mpc}^{-1})\) in the presence of foregrounds with future CMB satellites.

We have proposed a tricky component separation approach (Constrained ILC) to null the CMB contamination in \(\mu\), which otherwise biases the \(\mu\)-\(T\) correlation signal.

Among the CMB satellite concepts, PICO is in the best position to control foregrounds and detect anisotropic \(\mu\)-type distortions with \(f_{\text{NL}}(740 \text{ Mpc}^{-1}) \lesssim 2100\).

Optimization: more detectors or more frequencies?

Extended frequency coverage at frequencies \(v \leq 40 \text{ GHz}\) and \(v \geq 400 \text{ GHz}\) provides more leverage than increased channel sensitivity.

Low-frequencies \(v \leq 40 \text{ GHz}\) have more constraining power on anisotropic \(\mu\)-distortions than high-frequencies \(v \geq 400 \text{ GHz}\).

Absolute calibration / FTS like PIXIE still needed for \(\mu\)-distortion anisotropies to break the \(f_{\text{NL}}\times\langle\mu\rangle\) degeneracy.

Thank you for your attention!