Simulating new physics at colliders

Fuks Benjamin

LPTHE / UPMC

1st MadAnalysis 5 workshop on LHC recasting
@ High 1, Gangwon Province, Korea

August 20 - 28, 2017
1. When new physics meets Monte Carlo simulations

2. {

3. Cascade decays

4. Merging and next-to-leading order

5. Conclusions - summary
The need for better simulation tools has spurred a very intense activity:

- Automated matrix element generation (MADGRAPH5, SHERPA, WHIZARD, etc.)
- Higher-order computations (MC@NLO, POWHEG, NNLO)
- Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)
- Matrix element - parton showering matching
- Merging techniques (MLM, CKKW, FxFx, UNLOPS, etc.)

Standard Model simulations:

- All processes relevant for the LHC can be simulated with a very good precision.
- The precision will improve in the next few years (e.g. electroweak corrections)

Standard Model simulations under control

What about new physics?
New physics simulations: the challenges

- The challenges with respect to new physics simulations are different
 - Theoretically, we are still in the dark
 - No sign of new physics
 - All measurements are Standard-Model-like
 - There is not any leading new physics candidate theory
 - Plethora of models to implement in the tools

- New physics is a standard in many tools today
 - Result of 20 years of developments
 - Simulations mostly achieved at the leading-order accuracy in QCD
 - But this has started to change a couple of years ago (NLO is available)

What are the ingredients behind this success?
Outline

1. When new physics meets Monte Carlo simulations

 2. **FeynRules and the UFO**

3. Cascade decays

4. Merging and next-to-leading order

5. Conclusions - summary
A Monte Carlo tool framework for new physics

Streamlining the chain from physics models to analyzed simulated collisions

Need for a framework…

★ … where any new physics model can be implemented
★ … where any new physics model can be tested against data
★ … easy to validate, to maintain
★ … easily integrable in a software chain

Specifications

Inputs / Outputs

★ A physics object: the Lagrangian (unique and non ambiguous, no MC dependence)
★ Flexible (a change in the model = a change in the Lagrangian)
★ Automatic derivation of the Feynman rules and generate MC model files

Validation

★ Automatic and systematical

Distribution

★ Public, transparent
★ No private tools

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC’11)]
Automating new physics simulations

First steps towards a new physics simulation framework: LANHEP
- Restricted to the CALCHEP / COMPHEP environment
- Working environment: C

FeynRules & UFO
- Working environment: MATHEMATICA
 - Flexibility, symbolic manipulations, easy implementation of new methods, etc.
 - Interfaced to many Monte Carlo tools
 - Dedicated translators to several tools (obsolete today thanks to the UFO)
 - Automatic linking of Lagrangians to files in a given programming language

The SARAH package
- Working environment: MATHEMATICA
- Interfaced to many Monte Carlo tools
- Spectrum generator features
Example: FEYNRULES

✧ **What is FEYNRULES?**

✦ A framework to develop new physics models
✦ **Automatic export** to several Monte Carlo event generators

→ Facilitate phenomenological investigations of BSM models
→ Facilitate the confrontation of BSM models to data

✦ **Validation** of an implementation using several of the linked MC programs

✧ **Main features**

✦ **MATHEMATICA** package
✦ Core function: derives Feynman rules from a Lagrangian
✦ Requirements: locality, Lorentz and gauge invariance
✦ Supported fields: scalar, fermion, vector (+ ghost), spin-3/2, tensor, superfield
From **FeynRules** to Monte Carlo tools...

[Christensen, Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr, BF (CPC '14)]

Model
- **Particles**
- **Gauge symmetries**
- **Parameters**
- **Lagrangian**

FeynRules

TEX output

Superspace
- [Duhr, BF (CPC '11); BF (IJMPA '12)]

Mass diagonalization
- [Alloul, D'Hondt, De Causmaecker, BF, Rausch de Traubenberg (EPJC '13)]

Decay package
- [Alwall, Duhr, BF, Mattelaer, Oezturk, Shen (CPC'15)]

NLO
- [Degrande (CPC'16)]

Computational tools
- **CalcHEP**
- **FEYNARTS**
- **WHIZARD**
- **Aloha**
- **HERWIG ++**
- **GOSAM**
- **SHERPA**
- **MadGraph5_aMC@NLO**
- **MadAnalysis 5**
- **The UFO**
 - [Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)]

Whizard interface: Christensen, Duhr, BF, Reuter, Speckner (EPJC '12)

^Support for spin 3/2: Christensen, de Aquino, Deutschmann, Duhr, BF, Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu (EPJC '13)
Example: supersymmetric QCD

Particle content

- **Matter sector**
 - ★ One massive Dirac fermion: a quark
 - ★ Two massive scalar fields: a left-handed and a right-handed squark

- **Gauge sector**
 - ★ One massive Majorana fermion: a gluino
 - ★ One massless gauge boson: the gluon

Lagrangian

\[
\mathcal{L} = - \frac{1}{4} g_{\mu\nu} g^{\mu\nu} + \frac{i}{2} \bar{q} \slashed{D} \tilde{q} + D_{\mu} \tilde{q}_{L} D^{\mu} \tilde{q}_{L} + D_{\mu} \tilde{q}_{R} D^{\mu} \tilde{q}_{R} + i \bar{q} \slashed{D} q \\
- m_{L}^{2} \tilde{q}_{L} \tilde{q}_{L} - m_{R}^{2} \tilde{q}_{R} \tilde{q}_{R} - m_{q} \bar{q} q - \frac{1}{2} m_{g} \bar{g} g \\
- \frac{g_{s}^{2}}{2} \left[- \tilde{q}_{L}^{\dagger} T^{a} \tilde{q}_{L} + \tilde{q}_{L}^{\dagger} T^{a} \tilde{q}_{R} \right] \left[- \tilde{q}_{L} T^{a} \tilde{q}_{L} + \tilde{q}_{R}^{\dagger} T^{a} \tilde{q}_{R} \right] \\
+ \sqrt{2} g_{s} \left[- \tilde{q}_{L}^{\dagger} T^{a} \left(\tilde{g}^{a} P_{L} q \right) + \left(\bar{q} P_{L} \tilde{g}^{a} \right) T^{a} \tilde{q}_{R} + h.c. \right]
\]

- Kinetic and mass terms for all fields (first two lines)
- Supersymmetric gauge interactions (last two lines)
How to write a FEYNRULES model file?

✦ A FEYNRULES model file is compliant with the MATHEMATICA syntax
✦ It contains:

✧ A preamble
★ Author information
★ Model information
★ Index definitions

✧ The declaration of the fields
★ Names, spins, PDG codes
★ Indices, quantum numbers
★ Masses, widths
★ Classes and class members

✧ The declaration of the gauge group
★ Abelian or not
★ Representation matrices
★ Structure constants
★ Coupling constant
★ Gauge boson or vector superfield

✧ The declaration of the parameters
★ External and internal
★ Scalar and tensor

✧ A Lagrangian

See the manual for more details
Gauge groups

✦ Declaration in the \(M\text{\backslashGaugeGroups list} \)

忽悠 A declaration \(\equiv \) a set of MATHEMATICA replacement rules

★ \texttt{SUSY-QCD: SU(3)c}

忽悠 Each rule represents one group property

★ \texttt{Abelian: abelian or non-abelian gauge group}

★ \texttt{GaugeBoson: the associated gauge boson}

★ \texttt{CouplingConstant: the coupling constants}

★ \texttt{StructureConstant: the structure constants}

★ \texttt{Representation: list of 2-tuples linking an index (Colour) to the related representation (T)}

Advantages of a proper gauge group declaration

忽悠 Render the writing of the Lagrangian easier:

★ \texttt{Covariant derivatives \((DC[q, mu]) \)}

★ \texttt{Field strength tensors \((FS[G, mu, nu, a]) \)}
Declaration in the \textit{M\underline{C}lassesDescription} list

- A declaration ≡ a set of MATHEMATICA replacement rules
 - ★ The gluon example: \texttt{G}

- Each rule ≡ a property of the field
 - ★ Vector field \(\Rightarrow\) the label is \texttt{V[1]} (with \texttt{V})
 - ★ \texttt{Classname}: symbol to use in the Lagrangian (\texttt{G})
 - ★ \texttt{SelfConjugate}: own antiparticle (\texttt{True})
 - ★ \texttt{Indices}: the gluon lies in the adjoint representation of \texttt{SU(3)\textsubscript{c}}
 - \(\Rightarrow\) The gluon has been previously set as the gauge boson of \texttt{SU(3)\textsubscript{c}}
 - \(\Rightarrow\) Its index (\texttt{Gluon}) is internally linked to the adjoint representation of the group
 - ★ Other properties: vanishing mass and widths, PDG code set to 21

\begin{verbatim}
M\underline{C}lassesDescription = {
 V[1] == {
 ClassName -> \texttt{G},
 SelfConjugate -> \texttt{True},
 Indices -> \{\texttt{Index[Gluon]}\},
 Mass -> 0,
 Width -> 0,
 PDG -> 21
 },
 ...
\end{verbatim}
Declaring mixing squark fields

✦ Extra elements in the MClassesDescription list

\[S[1] == \{ \begin{align*}
\text{ClassName} & \rightarrow \text{sqL}, \\
\text{SelfConjugate} & \rightarrow \text{False}, \\
\text{Indices} & \rightarrow \{\text{Index[Colour]}\}, \\
\text{Unphysical} & \rightarrow \text{True}, \\
\text{Definitions} & \rightarrow \{\text{sqL[c_] -> Cos[theta] sq1[c] - Sin[theta] sq2[c]}\}
\end{align*} \}, \]

\[S[2] == \{ \begin{align*}
\text{ClassName} & \rightarrow \text{sqR}, \\
\text{SelfConjugate} & \rightarrow \text{False}, \\
\text{Indices} & \rightarrow \{\text{Index[Colour]}\}, \\
\text{Unphysical} & \rightarrow \text{True}, \\
\text{Definitions} & \rightarrow \{\text{sqR[c_] -> Sin[theta] sq1[c] + Cos[theta] sq2[c]}\}
\end{align*} \}, \]

✦ Squark fields mix:
\[
\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix}
\]

★ Left and right-handed squarks are declared as unphysical

★ Definitions linking gauge- and mass-eigenstates are provided

➢ The rotations will be performed automatically by FEYNRULES
➢ The Lagrangian can be written in the gauge basis (easier)
The model contains three parameters:
- The strong coupling constants: g_s, α_s are both needed (required by the MC tools)
- The squark mixing angle θ
- Masses and widths are handled automatically

Declaration in the list MParameters
- A declaration \equiv a set of replacement rules
- Each rule \equiv a property of the parameters
 - **Internal** and **External** parameters
 - External \equiv free parameter \Rightarrow numerical value
 - Internal \Rightarrow dependent parameter \Rightarrow formula
 - **InteractionOrder**: specific to MG5_AMC
 (more efficient diagram generation)
 - **ParameterName**: specific to Monte Carlo tools
 - Other options exist (but unused)
Implementing the vector Lagrangian

✧ For the sake of the example: restriction to the gauge content of the theory
✧ The dynamics of the model is embedded in the vector Lagrangian

\[\mathcal{L}_{\text{vector}} = -\frac{1}{4} g_{\mu\nu} g^{\mu\nu} + \frac{i}{2} \tilde{g} \bar{\Phi} \tilde{g} - \frac{1}{2} m_{\tilde{g}} \tilde{g} \tilde{g} \]

✧ The implementation in FEYNRULES is easy

```plaintext
```
Feynman rules and FEYNRULES

✦ Extract all N-point interactions from the Lagrangian (with N>2)

```plaintext
In[14]:= FeynmanRules[LVector1, ScreenOutput \[Rule] True];
Starting Feynman rule calculation.
Expanding the Lagrangian...
Collecting the different structures that enter the vertex.
3 possible non-zero vertices have been found \[RightToward] starting the computation: 3 / 3.
3 vertices obtained.
(* * * * * * * * * * * * * * * * * * * *)
Vertex 1
Particle 1 : Vector , G
Particle 2 : Vector , G
Particle 3 : Vector , G
Vertex:
gs f_{a_{1},a_{2},a_{3}}^{\mu_{1},\mu_{2}} \eta_{\mu_{1},\mu_{2}} + gs f_{a_{1},a_{2},a_{3}}^{\mu_{3}} \eta_{\mu_{1},\mu_{2}} - gs f_{a_{1},a_{2},a_{3}}^{\mu_{2}} \eta_{\mu_{1},\mu_{2}} - gs f_{a_{1},a_{2},a_{3}}^{\mu_{2}} \eta_{\mu_{1},\mu_{2}} +
gs f_{a_{1},a_{2},a_{3}}^{\mu_{2}} \eta_{\mu_{1},\mu_{3}} + gs f_{a_{1},a_{2},a_{3}}^{\mu_{3}} \eta_{\mu_{1},\mu_{3}} - gs f_{a_{1},a_{2},a_{3}}^{\mu_{1}} \eta_{\mu_{2},\mu_{3}}
```

✦ Three vertices are found
✦ The expression above consists of the triple gluon vertex
✦ The index a_i is related to the i^{th} particle
✦ The index \(\mu_i \) is the Lorentz index of the i^{th} (vector) particle
✦ This can then be exported automatically to MC generators
New physics simulations: other challenges

A comprehensive approach to Monte Carlo simulations

Implementation of any new physics theory in a MC tool is straightforward

Many interfaces dedicated to specific tools
- Removal of non compliant vertices
- Translation to a specific format/language

Not efficient
A step further: the Universal FEYNRULES Output

✦ Improving the maintenance: the UFO one format to rule them all

✦ The UFO in a nutshell

✦ UFO ≡ Universal FEYNRULES output
 ✫ **Universal** as not tied to any specific Monte Carlo program
 ✫ **Consists of a** PYTHON module to be linked to any code
 ✫ **This module contains** all the model information
 ✫ **Allows the models to contain** generic color and Lorentz structures
 ✫ **Can be employed for next-to-leading order calculations**

✦ The UFO is now a standard and used by many other programs

Terminology:

- UFO
- FeynRules
- PYTHIA
- ALOHA
- GOSAM
- HERWIG ++
- MadAnalysis 5
- Sherpa
- MadGraph5_aMC@NLO
- Whizard
- LanHEP
- Sarah
The UFO is a set of PYTHON files

- Factorization of the information: particles, interactions, propagation, parameters, NLO, etc.

Example: a UFO for supersymmetric QCD
Particles

- Particles are stored in the `particles.py` file
 - Instances of the particle class
 - Attributes: particle spin, color representation, mass, width, PDG code, etc.
 - Antiparticles automatically derived

```python
G = Particle(pdg_code = 21, name = 'G', antiname = 'G', spin = 3, color = 8, mass = Param.ZERO, width = Param.ZERO, texname = 'G', antitexname = 'G', charge = 0)
go = Particle(pdg_code = 1000021, name = 'go', antiname = 'go', spin = 2, color = 8, mass = Param.Mgo, width = Param.Wgo, texname = 'go', antitexname = 'go', charge = 0)

sq1 = Particle(pdg_code = 1000006, name = 'sq1', antiname = 'sq1~', spin = 1, color = 3, mass = Param.Msq1, width = Param.Wsq1, texname = 'sq1', antitexname = 'sq1~', charge = 0)

sq1__tilde__ = sq1.anti()
sq2 = Particle(pdg_code = 2000006, name = 'sq2', antiname = 'sq2~', spin = 1, color = 3, mass = Param.Msq2, width = Param.Wsq2, texname = 'sq2', antitexname = 'sq2~', charge = 0)

sq2__tilde__ = sq2.anti()

q = Particle(pdg_code = 6, name = 'q', antiname = 'q~', spin = 2, color = 3, mass = Param.Mq, width = Param.Wq, texname = 'q', antitexname = 'q~', charge = 0)

q__tilde__ = q.anti()
```
Parameters

- Parameters are stored in the parameters.py file
- Instances of the parameter class
- External parameters are organized following a Les Houches-like structure (blocks and counters)
- PYTHON-compliant formula for the internal parameters

```python
aS = Parameter(name = 'aS',
               nature = 'external',
               type = 'real',
               value = 0.1184,
               texname = '\alpha_s',
               lhablock = 'SMINPUTS',
               lhacode = [ 3 ])

G = Parameter(name = 'G',
              nature = 'internal',
              type = 'real',
              value = 2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi),
              texname = 'G')

Mgo = Parameter(name = 'Mgo',
                nature = 'external',
                type = 'real',
                value = 500,
                texname = '\text{Mgo}',
                lhablock = 'MASS',
                lhacode = [ 1000021 ])

Wq = Parameter(name = 'Wq',
               nature = 'external',
               type = 'real',
               value = 1.50833649,
               texname = '\text{Wq}',
               lhablock = 'DECAY',
               lhacode = [ 6 ])
```
Vertices decomposed in a spin x color basis (coupling strengths \equiv coordinates)

Example: the quartic gluon vertex can be written as

\[
\begin{align*}
ig_s^2 f_{a_1 a_2 b} f_{b a_3 a_4} (\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4})
\quad &+ ig_s^2 f_{a_1 a_3 b} f_{b a_2 a_4} (\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4}) \\
\quad &+ ig_s^2 f_{a_1 a_4 b} f_{b a_2 a_3} (\eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4})
\end{align*}
\]

\[
\Rightarrow \quad \begin{pmatrix}
ig_s^2 & 0 & 0 \\
0 & ig_s^2 & 0 \\
0 & 0 & ig_s^2
\end{pmatrix}
\begin{pmatrix}
\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \\
\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \\
\eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4}
\end{pmatrix}
\]

★ 3 elements for the color basis
★ 3 elements for the spin (Lorentz structure) basis
★ 9 coordinates (6 are zero)

Several files are used for the storage of the information
Example: the quartic gluon vertex

✦ General information in vertex.py

\[
V_2 = \text{Vertex(name='V_2',}
\begin{align*}
\text{particles} &= [\text{P.G, P.G, P.G, P.G}], \\
\text{color} &= ['f(-1,1,2)*f(3,4,-1)', 'f(-1,1,3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3,-1)'], \\
\text{lorentz} &= [\text{L.VVVV1, L.VVVV2, L.VVVV3}], \\
\text{couplings} &= \{ (1,1):C.GC_4, (0,0):C.GC_4, (2,2):C.GC_4 \}
\end{align*}
\]

★ \textit{lorentz} \equiv \text{spin basis}
 \begin{itemize}
 \item \text{in lorentz.py; common to all vertices}
 \end{itemize}

★ \textit{color} \equiv \text{color basis}

★ \textit{couplings} \equiv \text{coordinates}
 \begin{itemize}
 \item \text{in couplings.py; common to all vertices}
 \end{itemize}

\[
\begin{array}{c}
(f_{a_1 a_2 b} f_{b a_3 a_4}, f_{a_1 a_3 b} f_{b a_2 a_4}, f_{a_1 a_4 b} f_{b a_2 a_3}) \\
\times \begin{pmatrix}
 i g_s^2 & 0 & 0 \\
 0 & i g_s^2 & 0 \\
 0 & 0 & i g_s^2
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \\
\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \\
\eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4}
\end{array}
\]

✦ Lorentz structures: straightforward implementations in lorentz.py

\[
\text{L.VVVV1 = Lorentz(name='L.VVVV1',}
\begin{align*}
\text{spins} &= [3, 3, 3, 3], \\
\text{structure} &= \text{'Metric(1,4)*Metric(2,3) - Metric(1,3)*Metric(2,4)'}
\end{align*}
\]

✦ Couplings: straightforward implementations in couplings.py

\[
\text{C.GC_4 = Coupling(name='C.GC_4',}
\begin{align*}
\text{value} &= \text{'complex(0,1)*G**2'}, \\
\text{order} &= \{ \text{'QCD':2} \}
\end{align*}
\]

Coupling orders: for selecting diagrams
Outline

1. When new physics meets Monte Carlo simulations

2. **FeynRules** and the UFO

3. **Cascade decays**

4. Merging and next-to-leading order

5. Conclusions - summary
Do we need cascade decays?

Concrete models

- Many new states to be supplemented to the Standard Model
- Usually pair-produced
- Cascade-decaying into each other
- The lightest new state can be stable (and a dark matter candidate)

Is the simulation of 2 to N processes (with N large) a problem?

The issue is the computing time

- Matrix element generation is possible
- Computationally challenging
- Practically useless: diagrams with intermediate resonances dominate
Making decays easy: the key principle

✧ Production and decay processes are factorized
 ✧ Propagators can be seen as sums of products of external wave functions
 ✧ Example for a vector resonance

\[\mathcal{M} \sim j_1^\mu \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right] j_2^\nu = \sum_\lambda \frac{j_1^\mu}{M_{\text{prod}}(\lambda)} \frac{e_\mu^*(\lambda)}{M_{\text{prod}}(\lambda)} \frac{e_\nu(\lambda)}{M_{\text{dec}}(\lambda)} j_2^\nu \]

✧ Off-shell effects are lost (as a result of the factorization)
 ★ Resonance mass smearing: partial recovery

[Frixione, Laenen, Motylinksi, Webber (JHEP '07)]

Simulating new physics at colliders
Practical implementations of decays

🔹 Case 1: loss of spin correlations
 ✤ Helicity sums performed independently at the production and decay levels

\[
\mathcal{M} \sim j_1^\mu \left[g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right] j_2^\nu = \sum_\lambda j_1^\mu \varepsilon_\mu^*(\lambda) \frac{\varepsilon_\nu(\lambda) j_2^\nu}{M_{\text{prod}}(\lambda) M_{\text{dec}}(\lambda)} \approx \sum_\lambda j_1^\mu \varepsilon_\mu^*(\lambda) \sum_\lambda \varepsilon_\nu(\lambda) j_2^\nu
\]

Pythia 6 [Sjostrand, Mrenna, Skands (JHEP '06)]

🔹 Case 2: including spin correlations
 ✤ Helicity sums performed after accounting for production and decays

\[
\sum_\lambda j_1^\mu \varepsilon_\mu^*(\lambda) \frac{\varepsilon_\nu(\lambda) j_2^\nu}{M_{\text{prod}}(\lambda) M_{\text{dec}}(\lambda)}
\]

Herwig [Richardson (JHEP '01)]
Pythia 8 [Sjostrand, et al. (CPC '08)]
MadSpin [Artoisenet et al. (JHEP '13)]
Sherpa [Höche et al. (EPJC '15)]
Is a correct decay handling important: yes!

MADSPIN

ttH production @ (N)LOQCD
[LHC8, dileptonic tt decay]

SHERPA

squark pair production @ LO
[LHC8,
\[
\begin{align*}
\bar{u} &\rightarrow d \chi_1^+ \rightarrow \chi_1^0 W^+ \rightarrow \mu^+ \nu_{\mu} \\
\bar{u}^* &\rightarrow \bar{u} \chi_2^0 \rightarrow e^+ \bar{e}_R \rightarrow e^- \chi_1^0
\end{align*}
\]]
Outline

1. When new physics meets Monte Carlo simulations
2. FEYNRULES and the UFO
3. Cascade decays
4. Merging and next-to-leading order
5. Conclusions - summary
Modeling of extra QCD emissions

✦ Initial (and final) state radiation modeling is crucial
 ✤ Monojet-based dark matter searches
 ✤ Compressed spectra searches
 ✤ etc.
✦ Radiation can be predicted in different ways

✦ Matrix-element and parton-shower predictions are complementary
 ✤ Both can be combined
✦ Other option: NLO calculations
 ✤ Correct modeling of the first emission
 ✤ Merging of samples with different jet multiplicities also possible
Contributions to an NLO result in QCD

- Three ingredients: the Born, virtual loop and real emission contributions

\[
\sigma_{NLO} = \int d^4\Phi_n B + \int d^4\Phi_n \int_{\text{loop}} d^d\ell V + \int d^4\Phi_{n+1} R
\]

- Born
- Virtuals: one extra power of α_s and divergent
- Reals: one extra power of α_s and divergent

Challenge: computing predictions numerically (and in four dimensions)

★ The **MADGRAPH5_amC@NLO** solution
Fixed-order predictions

✦ **Leading-order (LO):** $d\sigma \approx d\sigma^{(0)}$
 ✤ Very naive
 ★ Rough estimate for many observables (large uncertainties)
 ★ Cannot be used for any observable (e.g., dilepton p_T)

✦ **Next-to-leading-order (NLO):** $d\sigma \approx d\sigma^{(0)} + \alpha_s \ d\sigma^{(1)}$
 ✤ Two divergent components: virtuals and reals
 ★ Their sum is finite (KLN theorem)
 ✤ Reduction of the theoretical uncertainties
 ★ Loops compensate trees
 ✤ Better description of the process
 ★ Impact of extra radiation, more initial states
 ★ Sometimes not enough
Matrix-element / parton shower matching

✦ Problems with NLO (fixed-order) calculations
 ✤ Soft and collinear radiation ➢ large logarithms
 ✤ Spoil the convergence of the perturbative series

Matching with parton showers

✦ Matching with parton showers
 ✤ Resummation of the soft and collinear radiation
 ✤ Predictions for a fully exclusive description of the collisions
 ✤ Suitable for going beyond the parton level (hadronization, detector simulation)
Virtual contributions

✦ Loop diagram calculations

✦ Calculations to be done in $d=4-2\varepsilon$ dimensions
 ★ Divergences made explicit ($1/\varepsilon^2$, $1/\varepsilon$)
 ★ Numerical challenge

✦ Rewriting loop integrals with scalar integrals

$$
\int d^d\ell \frac{N(\ell)}{D_0 D_1 \cdots D_{m-1}} = \sum a_i \int d^d\ell \frac{1}{D_{i_0} D_{i_1} \cdots}
$$

★ Involves integrals with up to four denominators
★ The decomposition basis is finite

The basis integrals can be calculated once and for all
The rational terms

✦ The loop momentum lives in a d-dimensional space
 ✦ Reduction to be done in d dimensions

\[
\int d^d\ell \frac{N(\ell, \bar{\ell})}{D_0 D_1 \cdots D_{m-1}} \quad \text{with} \quad \bar{\ell} = \ell + \tilde{\ell}
\]

✦ Numerical methods works in 4 dimensions: need to be compensated!

✦ The R_1 terms originate from the denominators

\[
\frac{1}{D} = \frac{1}{D} \left(1 - \frac{\bar{\ell}^2}{D} \right)
\]

✦ These extra pieces can be calculated generically (3 integrals in total)

✦ The R_2 terms originate from the numerator
 ✦ Process-dependent contributions proportional to $\bar{\ell}^2$
 ✦ In a renormalizable theory, there is a finite number of such R_2 pieces
 ★ They can be calculated once and for all for a specific model (NLOCT) [Degrande (CPC'15)]
 ➢ R_2 counterterm Feynman rules
Matching fixed order with parton showers

✦ Subtracting the poles
 - The structure of the poles appearing at NLO is known ➞ subtraction methods
 ★ C subtracted from the reals ➞ makes them finite
 ★ C integrated and added back to the virtuals ➞ makes them finite
 - Integrals can be made numerically (in four dimensions)

\[
\sigma_{NLO} = \int \! d^4\Phi_n \, B + \int \! d^4\Phi_{n+1} \left[\mathcal{R} - \mathcal{C} \right] + \int \! d^4\Phi_n \left[\int_{\text{loop}} \! d^d\ell \, V + \int \! d^d\Phi_1 \mathcal{C} \right]
\]

✦ Double counting when matching with parton showers: another subtraction

Two sources of double counting that compensate each other (shower unitarity)
 ★ Radiation: both at the level of the reals and of the shower
 ★ No radiation: both in the virtuals and in the no-emission probability
Automated NLO simulations with MG5_aMC

A comprehensive approach to Monte Carlo simulations

- Idea / Lagrangian
- FeynRules
- MADGRAPH5 aMC@NLO
- Parton showers
- Hadronization
- Detector reconstruction
- UFO (with counterterms)
- Automatic matching
- Simulated collisions
- Analysis codes
- Event analysis

From Lagrangians to analyzed NLO simulated collisions

- FeynRules is linked to the NLOCT module
 - Calculation of UV and R2 counterterms
 - Export of the information to the UFO

Matching with parton showers within MG5_aMC@NLO

- Automatically handled
We produce two gluinos that each decays into 2 jets and missing energy

- Decays via decoupled virtual squarks
- Topology: 4 jets (2 for each gluinos) and missing energy
- Important jet activity (massive colored particle production)

Two types of jets

- Decay jets arising from the massive gluino decays: hard
- Radiation jets: rather soft

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

Behavior of the 3rd jet
Differential distributions at the fixed order

- **Mixed effects**: origin of the third jet
 - Sometimes a decay jet
 - Sometimes a radiation jet
 - Some activity in the low-p_T region

- **Constant K-factors not accurate**
 - At all for 1 TeV gluinos
 - In the small p_T region for 2 TeV gluinos

- **NLO effects**
 - Crucial for a precise signal description
 - Normalization enhancement
 - Distortion of the shapes
 - Reduction of the theoretical uncertainties

LO description + constant K-factor:
 - Very inaccurate signal modelling
 - In particular in the low-p_T region

[Degrande, B.F., Hirschi, Proudom & Shao (PRD'15; PLB'16)]
Differential distributions (ME+PS)

- Parton showers populate the low-p_T region
 - Emitted partons often not reclustered back
 - Extra softer jets
 - Distortion of the spectrum
 - Effects milder for hard p_T
 (the matrix element drives the shape)

- Mixed effects: origin of the third jet
 - Sometimes a decay jet
 - Sometimes a radiation jet
 - Entanglement of the two effects: two peaks

- K-factor behavior (fixed-order vs. ME+PS)
 - Changes more pronounced for 1 TeV gluinos
 - Effect at larger p_T for 2 TeV gluinos
1. When new physics meets Monte Carlo simulations

2. **FeynRules** and the UFO

3. Cascade decays

4. Merging and next-to-leading order

5. Conclusions - summary
Many efforts have been invested in the simulations for new physics:

- Handling the heavy particle decays
- Next-to-leading order corrections (or multipartonic matrix element merging)

Techniques used both by theorists and experimentalists