

LHC recasting in a nutshell

Fuks Benjamin

LPTHE / UPMC

Ist MADANALYSIS 5 workshop on LHC recasting @ High I, Gangwon Province, Korea

August 20 - 28, 2017

LHC recasting in a nutshell

Outline

Introduction

New physics at the LHC

New physics simulations so far

Reinterpreting LHC physics analyses

Exploit the full potential of the LHC (for new physics) Priority #1 of the European strategy for particle physics Designing new analyses to probe new ideas Prospectives (based on MC simulations) Recasting LHC analyses to study models not considered The LHC legacy + LHC data has been collected with significant human and financial efforts Important for on-going analyses (within popular theoretical contexts of today) Important for future opportunities (within future scientific contexts) Data preservation in high-energy physics is mandatory [Kogler, South & Steder (JPCS'12)] Studies are on-going and go beyond raw data (ICFA DPHEP Study Group) \clubsuit Related tools need to be supported by the entire community [Kraml et al. (EPJC'12)] Both theorists and experimentalists Allowing for the reinterpretation of the LHC analysis results

The Simplified Model Spectra (SMS) approach

New physics results at the LHC

The SMS approach for reinterpretations

The SMS-based reinterpretation framework

- All signatures of a theory are decomposed according to those of the SMS searches
- Fiducial cross sections are calculated on the basis of public efficiency maps
- Comparisons to published upper bounds are made

SMS reinterpretation tools

The 'fastsim'-based approach

Beyond the SMS approach

There are plethora of new physics realizations that deserve to be studied
 Experimentalists cannot study all the options
 The simplified model approach is often not sufficient (e.g., different topologies)
 Our choice: rely on a public detector simulator mimicking ATLAS and CMS
 Need for a (public) framework where LHC analyses can be easily implemented

Detector modeling with DELPHES

[de Favereau et al. (JHEP'14)]

Detector simulation with DELPHES 3

- Starts from hadron-level MC information
- Derive calorimetric and track information; object reconstruction is then necessary
 - \star Close to what actually happens in a real experiment
- \clubsuit DELPHES is modular >> extra modules and tuning can be added / included
 - ★ Information on lepton isolation or track information; skimming of the output files, etc.

Current existing programs

Recasting made easy with MADANALYSIS 5 (1)

[Conte, Dumont, BF, Wymant (EPJC '14); Dumont, BF, Kraml et al. (EPJC '15)]

Starting poInstallation	oint: a s of the	how det	gnal to LHC analyses is rered/hadronized event fil ector simulators: 'install D lysis libraries: 'install PAD	e
◆ In practice:	MA5-WA he cor [ma5>in MA5: [ma5>su MA5:	ARNING respondent nport -> 2 ubmit Creation Vould	n.recast = on : DelphesMA5tune and/or the PADForM nding analyses will be unavailable samples/stops.hep.gz Storing the file 'stops.hep.gz' in ating folder 'ANALYSIS_0' you like to edit the recasting Card	
			g card (only on/off switc d CMS analyses; O(5)13 Te	hes to be set by the user) V ATLAS+CMS analyses
atlas_1605_03814 ATLAS_1604_07773 ATLAS_EXOT_2014_06 cms_exo_12_047 cms_exo_12_048 cms_b2g_14_004 cms_b2g_12_022 CMS_B2G_12_012	v1.2 v1.2 v1.2 v1.2 v1.2 v1.2 v1.2 v1.2	on on on on on on on	delphes card ATLAS 1604 07773.tcl delphes card ATLAS 1604 07773.tcl delphes card atlas sus 2013 05 pad.tcl delphes card cms b2g 12 012.tcl delphes card cms b2g 12 012.tcl delphes card cms b2g 14 004.tcl delphes card cms b2g 12 012.tcl delphes card cms b2g 12 012.tcl	<pre># ATLAS - 13 TeV - multijet (2-6 jets) + met # ATLAS - 13 TeV - monojet # ATLAS - 8 TeV - monophoton # CMS - 8 TeV - monophoton # CMS - 8 TeV - monojet # CMS - 8 TeV - Dark matter production with a ttbar pair # CMS - 8 TeV - Dark matter production with a ttbar pair # CMS - 8 TeV - Monotop search # CMS - 8 TeV - T5/3 partners in the SSDL channel</pre>

Recasting made easy with MADANALYSIS 5 (2)

[Conte, Dumont, BF, Wymant (EPJC '14); Dumont, BF, Kraml et al. (EPJC '15)]

		utput file (e	-	v sta				ipie)
CLs if a	signal c	ross section	is provided					
Cross se	ections	excluded at 1	the 95% CL					
TLAS_1604_07773	EM1	25.8538538	27.4980471		0.0100000	0.0099499	0.000000	0.009949
TLAS_1604_07773	EM2	-1	-1		0.0000000	0.000000	0.000000	0.00000
TLAS_1604_07773	EM3	-1	-1		0.0000000	0.000000	0.000000	0.00000
TLAS_1604_07773	EM4	-1	-1		0.0000000	0.000000	0.000000	0.00000
TLAS_1604_07773	EM5	-1	-1		0.0000000	0.000000	0.000000	0.00000
TLAS_1604_07773	EM6	-1	-1		0.0000000	0.0000000	0.0000000	0.00000
TLAS_1604_07773	EM7	-1	-1		0.0000000	0.0000000	0.0000000	0.00000
TLAS_1604_07773	IM1	58.3118133	52.7020233		0.0100000	0.0099499	0.0000000	0.009949
TLAS_1604_07773	IM2	-1	-1		0.0000000	0.0000000	0.0000000	0.000000
TLAS_1604_07773	IM3	-1	-1		0.0000000	0.0000000	0.0000000	0.000000
LAS_1604_07773	IM4	-1	-1		0.0000000	0.0000000	0.0000000	0.00000
LAS_1604_07773	IM5	-1	-1		0.0000000	0.000000	0.000000	0.00000
TLAS_1604_07773	IM6	-1	-1		0.0000000	0.000000	0.000000	0.00000

Reimplemenation challenges

Reimplementing an analysis: the challenges

LHC recasting in a nutshell

Implementing a new analysis in a recasting tool

 Picking up an experimental publication Reading Understanding 	Relatively easy
Writing the analysis code in the tool internal language	Relatively easy
 Getting the information missing from the publication for Efficiencies (trigger, electrons, muons, b-tagging, JES, etc.) Including p_T and/or η dependence Accurate information 	or a proper validation Essential Often difficult!
 Detailed cutflows for some well-defined benchmark scena ★ Exact definition of the benchmarks (spectra) ★ Event generation information (cards, tunes, etc.) 	arios
 Expected number of events in each region and cross section Digitized histograms (e.g., on HEPDATA) 	ions
Comparing theory tools and real life	·、

Ex. I: CMS-SUS-I3-II (stops with one lepton)

[Conte, Dumont, BF, Wymant ('14)]

Cut	MADANALYSIS 5	CMS
At least one lepton, four jets and 100 GeV of missing transverse energy	31.4	29.7
At least one <i>b</i> -tagged jet	27.1	25.2
No extra loosely-isolated lepton or track	22.5	21.0
No hadronic tau	22.0	20.6
Angular separation between the missing momentum and the two hardest jets	18.9	17.8
Hadronic top quark reconstruction	12.7	11.9
The transverse mass M_T (defined in the text) is larger than 120 GeV	10.4	9.6
At least 300 GeV of missing transverse energy and $M_{T2}^W > 200$ GeV	5.1	4.2

LHC recasting in a nutshell

Validation

Ex.2: ATLAS-EXO-2014-04 (monophoton)

Ex.3: Recasting CMS-EXO-12-048

[Conte, BF, Guo ('16)]

* D	ssing information fo iscussion with CMS	iscussions with CMS needed					
* (utflows and Monte C	arlo inte	ormatic	on for give	en ben	chmarks	
Vali	idation:						
	Selection step	CMS	ϵ_i^{CMS}	MA5	ϵ_i^{MA5}	$\delta_i^{ m rel}$	
0	Nominal	84653.7		84653.7			Validated at
1	One hard jet	50817.2	0.6	53431.28	0.631	5.2%	the 20% leve
2	At most two jets	36061	0.7096	38547.75	0.721	1.61%	
3	Requirements if two jets	31878.1	0.884	34436.35	0.893	1.02%	
4	Muon veto	31878.1	1	34436.35	1.000	0	
5	Electron veto	31865.1	1	34436.35	1.000	0	
6	Tau veto	31695.1	0.995	34397.54	0.998	0.3%	Issue with the low-
	/ 1	8687.22	0.274	7563.04	0.219	20.00%	MET modelling in
	$E_T > 300 \text{ GeV}$	5400.51	0.621	4477.67	0.592	4.66%	DELPHES
	$E_T > 350 \text{ GeV}$	3394.09	0.628	2813.70	0.628	0.00%	DELFHES
	$E_T > 400 \text{ GeV}$	2224.15	0.6553	1753.71	0.623	4.93%	
	$E_T > 450 \text{ GeV}$	1456.02	0.654	1110.92	0.633	3.21%	
	$\not\!\!\!E_T > 500 \mathrm{GeV}$	989.806	0.679	722.83	0.650	4.27%	
	$E_T > 550 \mathrm{GeV}$	671.442	0.678	487.54	0.674	0.59%	

Ex.4 : When things are borderline...

ATLAS-EXOT-2014-04 (monophotons)

Effects non-reproducible with DELPHES (cleaning cuts, triggers, good vertexing)

ATLAS-SUS-2013-09 (stops in the dilepton channel)

Information on effects non-reproducible with DELPHES lost (student quitted)

Efficiencies computed by hand Maybe model-dependent

[Barducci ('15)]

Very good results (for a SUSY benchmark)

9989		9989	1 11
		9909	
8582			
8574			
8213			
4131		4384	
2645	-36.0	2637	-39.8
2068	-21.8	2052	-22.2
1898	-8.2	1856	-9.6
1887	-0.6	1840	-0.8
1219	-35.4	1234	-33.0
1188	-2.5	1233	-0.1
		·	Ľ
-	8213 4131 2645 2068 1898 1898 1887 1219	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Ex.5: And the darkness came...

Unfortunately: many more examples!

A wishlist for experimentalists - analysis

Analysis description

- Clear description of the selections, including their sequence
 Tabulated form appreciable
- * Efficiencies for objects (electrons, muons, jets, taus, b-tagging, etc.) \star Including p_T and η dependence
- Efficiencies for triggers, event cleaning, etc.
 - ★ Effects that cannot be modeled in our fast simulation
- Digitized figures (ROOT format, text format, etc.)
- Special variables (e.g., the CMS razor, asymmetric M_{T2})
 Snippets of code highly appreciated

A wishlist to experimentalists - validation

 \bullet Validation material \succ quality of the reinterpretation Public information on benchmark scenarios ★ Spectra and decay tables (under an SLHA-form) \star Several scenarios are appreciable Public information on the Monte Carlo tools configuration \star Cards, tunes, merging information, etc. Detailed cutflows for the benchmarks, with the correct cut ordering \star Including each step of the (pre)selection \star For several benchmarks **★** The more steps available, the better (preselection, cleaning, etc.) (pin down the differences of our machinery with CMS-ATLAS simulations) Kinematical distributions at different steps of the selection \star Extra cross-checks

Preservation

The LHC legacy

MADANALYSIS 5 analyses on INSPIRE

[BF, Martini ('16)]

The Public Analysis Database of MADANALYSIS

[Dumont, BF, Kraml et al. (EPJC '15)]

Physics

NLO effects on a CLs: top-philic dark matter

[Arina, Backovic, Conte, BF, Guo et al. (JHEP'16)]

How is the picture changing when including scale variations?

NLO effects on a CLs: top-philic dark matter

Summary

The LHC legacy

- * It is crucial to be able to reinterpret the LHC results in any theoretical context
- * This is a very active field of the last few years: several tools are available
- Reproducibility is the ability of an entire experiment to be reproduced, (possibly by an independent theoretical study)

Two approaches

The simplified model spectrum approach (based on efficiencies and cross sections)
 The factors strategy (simulating the detector in some ways)

.....

The fastsim strategy (simulating the detector in some ways)

Recasting in MADANALYSIS 5

MADANALYSIS 5 has been actively developed along the 'fastsim strategy' lines

 \star User-friendly way to confront any MC-simulated BSM signal to LHC results