The first MadAnalysis 5 workshop on LHC recasting @ Korea

Composite Models - 1 Model building issues G.Cacciapaglia (IPNL)

24/8/2017

in

Institut des Origines de Lyon

What do we know about the Higgs?

- The mass has been precisely measured!
- The couplings follow the SM expectations: being proportional to mass.
- The uncertainties are still large! 0(10%)
- Coupling measurements are always subject to model assumptions!!!

What do we know about the Higgs?

Theoretical modelling, i.e. the Standard Model Higgs

 $\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) + \mu^2 \phi^{\dagger}\phi - \lambda \ (\phi^{\dagger}\phi)^2$

"wrong sign"

It well <u>describes</u> the symmetry breaking, but no dynamical insight!

 $\phi = e^{i\pi^i \tau^i} \cdot \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix}$

 $au^i = rac{\sigma^i}{2}$ Pauli matrices

 $v = \frac{\mu}{\sqrt{2\lambda}} \sim 246 \text{ GeV}$

What do we know about the Higgs? $\mathcal{L}_{\text{Higgs}} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) + \mu^{2} \phi^{\dagger}\phi - \lambda (\phi^{\dagger}\phi)^{2}$

<u>Custodial symmetry</u> as a lucky accident:

$$\phi = \begin{pmatrix} \varphi_u \\ \varphi_d \end{pmatrix} \qquad \tilde{\phi} = (i\sigma^2) \cdot \phi^* = \begin{pmatrix} \varphi_d^* \\ -\varphi_u^* \end{pmatrix}$$

Both transform as doublets of SU(2) [pseudo-real irrep]

We can rewrite the Lagrangian as:

 $\Phi \to U_L \cdot \Phi \cdot U_R^{\dagger}$

 $\Phi = \left(\tilde{\phi} \phi\right) = \left(\begin{array}{cc} \varphi_d^* & \varphi_u \\ -\varphi_u^* & \varphi_d \end{array}\right) \qquad \qquad \mathcal{L}_{\text{Higgs}} = \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^{\dagger} (D^\mu \Phi) \right] + \frac{\mu^2}{2} \text{Tr} \left[\Phi^{\dagger} \Phi \right] + \dots$

uncovers a "hidden" invariance under a global $SU(2)L \times SU(2)R$

What do we know about the Higgs?

Non-linear description:

 $\Sigma = e^{i\pi^{i}\tau^{i}} \cdot \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad \qquad \mathcal{L}_{NL} = f(h) \ (D_{\mu}\Sigma)^{\dagger} (D^{\mu}\Sigma) - V(h)$

It correctly describes the symmetry breaking.

The coupling of h to gauge bosons ARE proportional to the mass (but not determined).

However: trilinear h coupling is not determined!

Do we still need BSM?

We have a pretty good idea of the mechanism

But, we don't know how to protect it:

 $\delta m_h^2 \sim \frac{g^2}{16\pi^2} M_{\rm NPh}^2$

Do we still need BSM?

Compositeness is a way to dynamically protect the Higgs mechanism!

Compositeness scale

Do we still need BSM?

Compositeness is a way to dynamically protect the Higgs mechanism!

 $\delta m_h^2 \sim \frac{g^2}{16\pi^2} M_{\rm NPh}^2$

No scalars = No hierarchy problem!

Compositeness scale

3 TeV $\Lambda_C \sim 4\pi v_{\rm SM}$

Composite scalars

 $v_{\rm SM} \sim 246 \,\,{\rm GeV}$

The QCD template

Symmetry breaking by compositeness is an experimentally tested mechanism!

 $q = \left(egin{array}{c} u \\ d \end{array}
ight)$

 $\langle \bar{q}q \rangle = \langle \bar{q}_R q_L \rangle = (2,2)_{\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}}$

The quark condensate in QCD breaks the EW symmetry!

 $m_W = \frac{gf_\pi}{2} \sim 40 \,\,\mathrm{MeV}$

This observation led to the development of Technicolor in 1979-80.

Note: this ideas is as old as the Standard Model itself!

- "Implication of dynamical symmetry breaking", S.Weinberg, Phys.Rev. D13 (1976)
 974
- "Mass without scalars", S.Dimopoulos and
 L.Susskind, Nucl. Phys. B155 (1979) 237

Ú

- Goldstones include the
 longitudinal d.o.f. of W and
 Z
- the Higgs is a heavy bound state (singlet under H)

QCD template:

pions

sigma

 $U(1)_{\rm em}$

 $SU(2)_L \times U(1)_Y$

 $\overline{\tau}$

 $\boldsymbol{\sigma}$

 $\mathcal{G}
ightarrow \mathcal{H}$

- Goldstones include the
 longitudinal d.o.f. of W and
 Z
- the Higgs is a pseudo Goldstone (pNGB)

 $SU(2)_L \times U(1)_Y$

ANATOMY OF A COMPOSITE HIGGS MODEL

Michael J. DUGAN, Howard GEORGI and David B. KAPLAN Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 14 November 1984

 $SU(2) \times U(1)$ breaking

Fig. 1. Shown above is the circle of almost degenerate minima for the ultrafermion condensate, with radius $A_{\rm UC}$. The true vacuum of a composite Higgs theory misaligns with the SU(2)×U(1) preserving direction by an angle θ . In the SU(2)×U(1) preserving basis, it looks like the PGB field ϕ , corresponding to angular excitations, has developed a VEV. The mass of the W is then characterized by the scale $A_{\rm UC} \sin \theta$, and the shifted ϕ -field (properly normalized) is the Higgs boson.

		QCD Le	emplate: f = v	$rac{v}{f}\sim 0.2$	
		QCD	TC	PNGB	
	f	130 MeV	246 GeV	1.2 TeV	
pions ->	pNGBs	135 MeV	255 GeV	1.3 TeV	<- the Higgs?
	sigma	500 MeV	950 GeV	4.7 TeV	
	rho	775 MeV	1.5 TeV	7 TeV	
	proton	938 MeV	1.8 TeV	9 TeV	

Anabomy of the potential

Higgs mass in the small theta limit: $m_h \sim yf\sin\theta \sim yv_{SM}$

Naturally in the right ballpark, without fine tuning!

The Higgs needs to become a massless Goldstone to join the other 3 in a full multiplet of the unbroken SU(2)XU(1) symmetry

Anabomy of the potential

$V \sim \alpha \sin^2 \theta + \beta \sin^4 \theta$

Minima:

 $\beta \ll \alpha$

 $\beta \sim \alpha$

 $\theta \sim \frac{\pi}{2}$ $\theta \sim \epsilon$

pNGB Composite Higgses: which model?

G	\mathcal{H}	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) imes \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) imes \mathrm{U}(1)} ight)$	Ref.
SO(5)	SO(4)	✓	4	4 = (2, 2)	11]
$SU(3) \times U(1)$	$SU(2) \times U(1)$		5	$2_{\pm 1/2} + 1_0$	10,35
SU(4)	Sp(4)	✓	5	5 = (1, 1) + (2, 2)	[29, 47, 64]
SU(4)	$[SU(2)]^2 imes U(1)$	√*	8	$(2,2)_{\pm 2} = 2 \cdot (2,2)$	65]
SO(7)	SO(6)	✓	6	$6 = 2 \cdot (1, 1) + (2, 2)$	Ξ
SO(7)	G_2	√*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$	66]
SO(7)	$SO(5) \times U(1)$	√*	10	$\mathbf{10_0} = (3, 1) + (1, 3) + (2, 2)$	_
SO(7)	$[SU(2)]^3$	√*	12	$({f 2},{f 2},{f 3})=3\cdot ({f 2},{f 2})$	_
Sp(6)	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	5	8	$(4,2) = 2 \cdot (2,2)$	65
SU(5)	$SU(4) \times U(1)$	√*	8	${f 4}_{-5}+ar{f 4}_{+f 5}=2\cdot({f 2},{f 2})$	67
SU(5)	SO(5)	√*	14	14 = (3,3) + (2,2) + (1,1)	[9, 47, 49]
SO(8)	SO(7)	✓	7	${f 7}=3\cdot ({f 1},{f 1})+({f 2},{f 2})$	
SO(9)	SO(8)	\checkmark	8	$8=2\cdot(2,2)$	67
SO(9)	$SO(5) \times SO(4)$	√*	20	(5 , 4) = (2 , 2) + (1 + 3 , 1 + 3)	34
$[SU(3)]^2$	SU(3)		8	${f 8}={f 1_0}+{f 2_{\pm 1/2}}+{f 3_0}$	8
$[SO(5)]^2$	SO(5)	√*	10	10 = (1, 3) + (3, 1) + (2, 2)	32
$SU(4) \times U(1)$	${ m SU}(3) imes { m U}(1)$		7	$3_{-1/3} + \mathbf{\bar{3}}_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2}$	35, 41
SU(6)	Sp(6)	√*	14	$14 = 2 \cdot (2, 2) + (1, 3) + 3 \cdot (1, 1)$	30,47]
$[SO(6)]^2$	SO(6)	√*	15	$15 = (1,1) + 2 \cdot (2,2) + (3,1) + (1,3)$	36

Table 1: Symmetry breaking patterns $\mathcal{G} \to \mathcal{H}$ for Lie groups. The third column denotes whether the breaking pattern incorporates custodial symmetry. The fourth column gives the dimension N_G of the coset, while the fifth contains the representations of the GB's under \mathcal{H} and $SO(4) \cong SU(2)_L \times SU(2)_R$ (or simply $SU(2)_L \times U(1)_Y$ if there is no custodial symmetry). In case of more than two SU(2)'s in \mathcal{H} and several different possible decompositions we quote the one with largest number of bi-doublets.

Bellazzini, Csaki, Serra 1401.2457

The FCD approach

G.C., F.Sannino 1402.0233

- · Define a confining gauge group (GTC)
- Add in N fermions charged under the confining group Grc
- Assign SM quantum numbers to the fermions (thus providing embedding in the global symmetry)
- · Couple them to SM fermions

The FCD approach

RTC is real: GF = $SU(N_{\psi})$ $\langle \psi^{i}\psi^{j} \rangle$ $SU(N_{\psi}) \rightarrow SO(N_{\psi})$ pseudo-real: GF = $SU(2N_{\psi})$ $\langle \psi^{i}\psi^{j} \rangle$ $SU(2N_{\psi}) \rightarrow Sp(2N_{\psi})$ complex: GF = $SU(N_{\psi})^{2}$ $\langle \bar{\psi}^{i}\psi^{j} \rangle$ $SU(N_{\psi})^{2} \rightarrow SU(N_{\psi})$

The FCD approach

coset	GTC	TF	Higgs doublets	pNGBs	
SU(4)/Sp(4)	sp(2N)	fund	1	5	- Minimal!
SU(5)/SO(5)	SU(4)	6	1	14	Dugan, Georgi, Kaplan 1985!!!
SU(4)×SU(4) /SU(4)	SU(N)	fund	2	15	G.C., T.Ma 1508.07014
SU(6)/Sp(6)	Sp(2N)	fund	2	14	G.C., M.Lespinasse in prep.

The hot potato: flavour!

The hot potato: flavour!

100,000 TeV

 $\Lambda_{\mathrm{flavour}}$

Scale of fermion mass generation

Intermediate conformal region $(\psi\psi) \to \mathcal{O}_H$

 $\dim[\mathcal{O}_H] = d_H$

effective Yukawa: $rac{1}{\Lambda_{q}^{d-1}} \mathcal{O}_{H} q_{L}^{c} q_{R}$

 $d \sim 1.$

10 TeV

1 TeV

 $\Lambda \sim 4\pi f$

f

Vector resonances,

....

Condensation scale (extra pions)

100 GeV $v_{\rm SM} \sim f \sin heta$

EWSB

 $m_{\rm top} \sim \left(\frac{4\pi f}{\Lambda_{\rm fl.}}\right)^{d-1} 4\pi f \sin \theta$

A no-go theorem?

Bounds on the dimensions of scalar operators can be extracted using bootstrap techniques!

Rattazzi, Rychkov, Tonni, Vichi 0807.0004

 $\phi \equiv \mathcal{O}_H$

 $d[\phi^2]_{\min} < f(d)$

Higgs mass operator!

 $\Delta m_H^2 \sim \left(rac{4\pi f}{\Lambda_{\rm H}}
ight)^{d-4} f^2$

A no-go theorem?

Q: does the bound apply to the Higgs?

 $(\psi^i\psi^j) = \phi^{ij}$

The scalar operator has flavour indices: many by-linear ops appear!

The bound applies to the one with lowest dimension!

A no-go theorem? No...

Q: does the bound apply to the Higgs?

Antipin, Mølgaard, Sannino 1406.6166

Gauge-Yukawa theory with weakly-coupled fixed point.

Dimensions are calculable (but small...)

The hot potato: flavour!

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

 $\frac{1}{\Lambda_{\rm q}^{d-1}} \mathcal{O}_H q_L^c q_R \qquad \qquad \Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm q}}\right)^{d-4} f^2 \qquad \text{Both irrelevant if}$

we assume:

 $d_H > 1$ $d_{H^2} > 4$

Let's postulate the existence of fermionic operators:

 $\frac{1}{\Lambda_{\rm fl.}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$

This dimension is not related to the Higgs!

 $f(y_L \; q_L Q_L + y_R \; q_R Q_R)$ with $y_{L/R} f \sim \left(rac{4\pi f}{\Lambda_{
m ell}}
ight)^{d_F-5/2} 4\pi f$

The partial compositeness paradigm

 $f(y_L \ q_L Q_L + y_R \ q_R Q_R)$

$$m_q \sim \frac{y_L y_R f^2}{M_Q^2} f \sin \theta$$

 $M_Q \sim f \Rightarrow y_L, y_R \sim 1$

Top can cancel top loop, PUVC $M_Q \sim 4\pi f \Rightarrow y_L, y_R \sim 4\pi$

Potential with top partners

Cancellation by top partner loops:

 $V \sim \alpha \sin^2 \theta + \beta \sin^4 \theta$ $\beta \sim \alpha$ Minimum: $\theta \sim \epsilon$ $M_T \sim f$ needed to effectively cut-off the top loops.

 $M_T \sim 4\pi f$ Use technifermion mass!

Partial compositeness

Summary so far:

- Flavour seems to require the presence of a conformal phase above Lambda
- Needs to explain why large anomalous dimensions,
 or how couplings to quarks generated at low scale
- Partial compositeness may imply light fermionic
 bound states.
- Linear couplings of SM quarks need to be generated

Top partners as baryons

Gauge-fermion underlying theory

 $\frac{1}{\Lambda_{\rm fl.}^2} \begin{array}{c} q\psi\psi\psi\\ \checkmark\\ \checkmark\end{array}$

 $d_T^{\text{naive}} = 9/2$

- typically loop-suppressed
- psi need to carry colour and flavour quantum numbers

- higher dimension, but easier to generate
- Note: issue with other 4-Fermion
 interactions non avoided!!! Anomalous
 dimensions are crucial!

L.Vecchi 1506.00623

	SU(3)	$SU(3)_c$	$SU(2)_w$	$U(1)_Y$
T	3	3	1	a
D	3	1	2	$\frac{1}{3} - \frac{1}{2}a$
S	3	1	1	$-\frac{1}{6} - \frac{1}{2}a$
S'	3	1	1	$rac{5}{6} - rac{1}{2}a$

 $SU(7) \times SU(7) \rightarrow SU(7)$

• DS (and DS') are Higgs candidates!

coloured mesons are also present: TS, TT, ...

♂ 3-fermion baryons: TDS, TSS', ...

L.Vecchi 1506.00623

	SU(3)	$SU(3)_c$	$SU(2)_w$	$U(1)_Y$
T	3	3	1	a
D	3	1	2	$\frac{1}{3} - \frac{1}{2}a$
S	3	1	1	$-\frac{1}{6} - \frac{1}{2}a$
S'	3	1	1	$rac{5}{6} - rac{1}{2}a$

 $\mathcal{L}_{\rm PC} = \frac{C_q}{\Lambda_{\rm P}^2} q \overline{TDS} + \frac{C_u}{\Lambda_{\rm P}^2} u TDD + \frac{C_u'}{\Lambda_{\rm P}^2} u TSS' + \frac{C_d}{\Lambda_{\rm P}^2} dTSS + \text{hc.}$

Large mass given to T, to remove coloured mesons: T is like a heavy flavour in QCD.

L.Vecchi 1506.00623

	SU(3)	$SU(3)_c$	$SU(2)_w$	$U(1)_Y$
T	3	3	1	a
D	3	1	2	$\frac{1}{3} - \frac{1}{2}a$
S	3	1	1	$-\frac{1}{6} - \frac{1}{2}a$
S'	3	1	1	$rac{5}{6} - rac{1}{2}a$

 $\mathcal{L}_{\rm PC} = \frac{C_q}{\Lambda_{\rm P}^2} q \overline{TDS} + \frac{C_u}{\Lambda_{\rm P}^2} u TDD + \frac{C_u'}{\Lambda_{\rm P}^2} u TSS' + \frac{C_d}{\Lambda_{\rm P}^2} dTSS + \text{hc.}$

Can baryons have large anomalous dimensions?

Anomalous dimensions can be estimated perturbatively in large NF QCD

> Pica, Sannino 1604.02572 L.Vecchi 1607.02740

$$d_{\psi^3}=9/2-\gamma^B$$

 $(\gamma^B\sim 2)$
 $d_{\psi^4}=6-2\gamma_m$ $(\gamma_m\sim 1)$

Note: anomalous dimensions are physical only at the conformal fixed point!

Pica, Sannino 1604.02572 L.Vecchi 1607.02740

Sequestering QCD

global : $\langle \psi \psi \rangle \neq 0$

DM?

a) $\langle \chi \chi \rangle \neq 0$

coloured pNGBs di-boson

b) $\langle \chi \chi \rangle = 0$

Light top partners from & Hooft anomaly conditions?

An example

Baryons: $\psi\psi\chi$ GTC

 ψ

Barnard, Gherghetta, Ray 1311.6562

Global symmetries

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	${ m SU(2)}_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)	
Q_1		1	2	0				
Q_2		-	-	Ŭ	1	1	$-6N_c$	
Q_3		1	1	1/2			$2N_c+1^{q\chi}$	
Q_4		1	1	-1/2				
X 1								
χ_2		3	1	x				
χ_3					1	6	a	
χ_4							q_{χ}	
χ_5		3	1	-x				
χ_6								

Global symmetries

More precisely, the global symmetries are: $SU(N_{\psi}) imes SU(N_{\chi}) imes U(1)_{\psi} imes U(1)_{\chi}$

WZW term:

$$\mathcal{L} \supset rac{g_i^2}{32\pi^2} rac{\kappa_i}{f_a} \; a \; \epsilon^{\mu
ulphaeta} G^i_{\mu
u} G^i_{lphaeta} \, ,$$

Coefficients depend on the underlying dynamics!

$$G = A, W, Z, g !!!$$

Cai, Flacke, Lespinasse 1512.04508

Anomalous U(1) -> heavy η'

Orthogonal U(1) -> pNGB a

Decays and production only via WZW anomaly.

Model zoology

						1	
$G_{\rm HC}$	ψ	x	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	\times SU(6)/	/SO(6)		
$SO(N_{ m HC})$	$5 imes \mathbf{S}_2$	$6 imes \mathbf{F}$	$N_{\rm HC} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	1	
$SO(N_{\rm HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$N_{\rm HC} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	1	
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$6 imes { m Spin}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{12}$	1/3	$N_{ m HC}=7,9$	м1, м2
$SO(N_{\rm HC})$	$5 imes {f Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{ m HC}=7,9$	мз, м4
	Real	Pseudo-Real	SU(5)/SO(5)	$) \times SU(6)$	/Sp(6)		
$Sp(2N_{ m HC})$	$5 imes \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\tfrac{5(N_{\rm HC}+1)}{3}$	1/3	1	
$Sp(2N_{\rm HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{ m HC} \geq 4$	$\tfrac{5(N_{\rm HIO}-1)}{3}$	1/3	$2N_{\rm HC}=4$	M5
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$6 imes { m Spin}$	$N_{\rm HO}=11,13$	$egin{array}{cccc} 5 & 8 \ 24 & 48 \end{array}$	1/3	1	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes ({f F}, \overline{{f F}})$	$N_{ m HC}=4$	5 3	1/3	$N_{ m HC}=4$	M6
$SO(N_{\rm HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\rm HC} = 10, 14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	'SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{\rm HC})$	$4\times {\bf Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
	Complex	Real	SU(4) ² /SU(4	$) \times SU(6)$	/SO(6)		
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{\rm HC}=10$	<u>8</u> 3	2/3	$N_{\rm HC}=10$	M10
$SU(N_{\rm HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$6 imes \mathbf{A}_2$	$N_{ m HC}=4$	2 3	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^2/SU(4)$	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{ m HC} \geq 5$	$rac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	1	
$SU(N_{\rm HC})$	$4\times (\mathbf{A}_2, \mathbf{A}_2)$	$3 \times (\mathbf{F}, \mathbf{F})$	$N_{ m HC}=5$	4	2/3	1	

Ferretti 1604.06467

$G_{ m HC}$	ψ	x	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name	
	Pseudo-Real Real $SU(4)/Sp(4) \times SU(6)/SO(6)$							
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8	
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9	
		Defines f	$tan \zeta$	$T' = \psi$	ψχ	Theory co	onfines!	
	Note: there is enough baryons to give mass to							

the top (and bottom) only!

Example of predictions: di-boson resonances

Belyaev, Cacciapaglia et al 1610.06591

	Pseudo-Real	Real	$SU(4)/Sp(4) \times SU(6)/SO(6)$				
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \leq 36$ $\overline{_{3(}}$	$\frac{1}{(N_{\rm HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9

The EFT is the same! Numerical value of couplings:

Model		κ_g	$rac{\kappa_W}{\kappa_g}$	$rac{\kappa_B}{\kappa_g}$	$\frac{C_t}{\kappa_g}$ (2,0)	$rac{C_t}{\kappa_g}~(0,2)$	$ an\zeta$
M8	a	-0.77(-0.39)	-1.2(-2.5)	1.5(0.17)	-1.2(-2.5)	0.40(0.40)	
	η'	1.9(2.0)	0.20(0.096)	2.9(2.8)	0.20(0.0.96)	0.40(0.40)	-0.41
	π_8	7.1	0	1.3	0	0.40	
M9	a	-4.3(-2.7)	-0.55(-2.4)	2.1(0.26)	-0.068(-0.30)	0.18(0.18)	
	η'	1.3(3.6)	5.8(1.3)	8.5(4.0)	0.73(0.16)	0.18(0.18)	-3.26
	π_8	16.	0	1.3	0	0.18	

Assuming $f_a = f_{\psi} = f_{\chi}$

Model M8

Belyaev, Cacciapaglia et al 1610.06591

"a" too light for the LHC!

For light masses: bounds competitive with EW precision! Larger top couplings: reduced diboson rates due to tt BR.

Model M9

 m_a

 m_n

= 0.74

Belyaev, Cacciapaglia et al 1610.06591

Above red line, bound driven by "a"!

Bounds stronger than EW precision in most of the parameter space!

PC with scalars

Sannino, Strumia, Tesi, Vigiani 1607.01659

- No need for anomalous dimensions: the coupling is already marginal
- Many scalars can be added: complete mass and flavour structures
- Naturalness in question (maybe asymptotic safety?)

Litim, Sannino 1406.2337 Pelaggi, Sannino, Strumia, Vigiani 1701.01453

PC with scalars

Sannino, Strumia, Tesi, Vigiani 1607.01659

Top partner as a bound state of fermion + scalar!

	$SU_c(3)$	$SU_L(2)$	$U_Y(1)$	$SU_{\mathcal{F}}(4)$	$U_B(1)$	$\operatorname{Sp}_{\mathcal{S}}(6)$
\mathcal{F}_Q	1		0			
\mathcal{F}_{u}	1	1	$-\frac{1}{2}$		0	1
\mathcal{F}_d	1	1	$\frac{1}{2}$			
\mathcal{S}_t		1	$-\frac{1}{6}$	1	$-\frac{1}{3}$	
Q_3			$\frac{1}{6}$			
t		1	$-\frac{2}{3}$			
b		1	$\frac{1}{3}$			

Doublets of SU(2)TC

 $\mathcal{L}_{top-bottom} = y_{tL}Q_3 \mathcal{S}_t \epsilon_{TC} \mathcal{F}_Q + y_{tR} t \mathcal{S}_t^* \mathcal{F}_d + y_{bR} b \mathcal{S}_t^* \mathcal{F}_u + h.c.$

Minimal model on the Lattice

T.Ryttov, F.Sannino 0809.0713 Galloway, Evans, Luty, Tacchi 1001.1361

 $G_{\rm TC} = SU(2)$ $\left(egin{array}{c} U \ D \end{array}
ight)$ 2 Dirac doublets

 $\psi^{1} = U_{L} \quad \psi^{2} = D_{L} \quad \psi^{3} = (i\sigma^{2})_{\mathrm{TC}}U_{R}^{C} \quad \psi^{4} = (i\sigma^{2})_{\mathrm{TC}}D_{R}^{C}$

	<i>SU</i> (2) _{TC}	$SU(4)_{\psi}$	SU(2) _L	U(1) _Y
$\left(egin{array}{c} \psi^1 \ \psi^2 \end{array} ight)$			2	0
ψ^3			1	-1/2
ψ^4			1	1/2

SU(2)R doublet

Minimal model on the Lattice

C.Pica, F.Sanninoet al 1412.7302 1607.06654, 1612.09336, ...

Massless fermions <u>cannot</u> be simulated on the lattice.

Each point in the plot is extrapolated to the continuum (see next slide)

Continuum limit extrapolation

Large errors due to the extrapolation to the continuum

Effects of Lattice spacing and finite volume should be under control.

The vector resonance

 $\sin\theta \le 0.2$

 $m_a = \frac{3.6 \pm 0.9 \text{ TeV}}{\sin \theta} \gtrsim 18 \text{ TeV}$ $m_{\rho} = \frac{3.2 \pm 0.5 \text{ TeV}}{\sin \theta} \gtrsim 16 \text{ TeV}$ $m_{\sigma} \sim ???$ $m_\eta \sim \frac{m_h}{\sin \theta} \gtrsim 600 \; GeV$ $m_h = 125 \; GeV$

Arthur, Drach, et al. 1602.06559

The spectrum

Lallice resulls:

 $m_{a} = \frac{3.6 \pm 0.9 \text{ TeV}}{\sin \theta} \gtrsim 18 \text{ TeV}$ $m_{\rho} = \frac{3.2 \pm 0.5 \text{ TeV}}{\sin \theta} \gtrsim 16 \text{ TeV}$ $m_{\sigma} \sim ???$

 $\sin\theta \le 0.2$

$$m_\eta \sim \frac{m_h}{\sin \theta} \gtrsim 600 \; GeV$$

 $m_h = 125 \; GeV$

A.Hasenfratz, C.Rebbi, O.Witzel 1609.01401, 1611.07427

study QCD (i.e. SU(3) gauge theory) with 12 flavours.

4 flavours are light, with mass m_l 8 flavours are heavy, with mass m_H

A.Hasenfratz, C.Rebbi, O.Witzel 1609.01401, 1611.07427

Ratios do not depend on the
 heavy mass! (f fixed by it)

• For $m_l \ll m_H$, light pions become massless, while heavy one decouple.

• For $m_l \sim m_H$, the 12flavour model is recovered:

> ratios become equal, while both vanish due to conformal behaviour

$$m_{\pi} \to 0, \quad f_{\pi} \to 0$$

 $m_{\pi}/f_{\pi} \rightarrow \sim 7$

A.Hasenfratz, C.Rebbi, O.Witzel 1609.01401, 1611.07427

A.Hasenfratz, C.Rebbi, O.Witzel 1609.01401, 1611.07427

- Simple composite models can contain a
 Dark pNGB (and the Higgs)
- Thermal relic natural for moderate tuning
- Testable @ Direct Detection, but no chance @
 the LHC!
- More work needed to explore models/ theories -> FCD a precious guide!