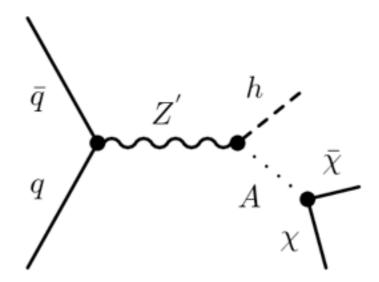
Recasting ATLAS-EXOT-2016-25

Search for Dark Matter Associated with a Higgs Boson Decaying to bbbar at sqrt(s) = 13 TeV with ATLAS

Sihyun Jeon, Yoojin Kang, Gyunggoo Lee, Chaehyun Yu

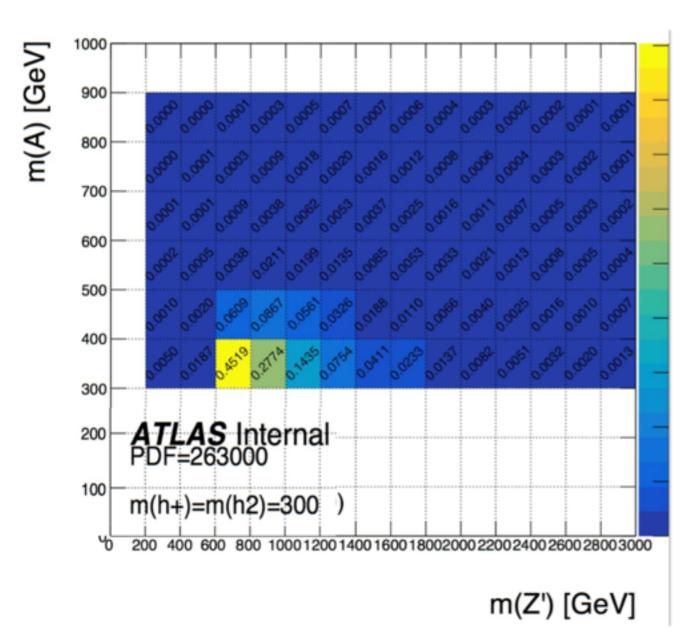
MadAnalysis5 Workshop 2017-AUG-27


Introduction

- ATLAS-EXOT-2016-25
 - arXiv:1707.01302
 - Submitted to Phys. Rev. Letter
- 2 Higgs Doublet Model with an additional U(1) gauge symmetry yielding an additional massive Z'
 - 5 Higgs bosons : SM h, H, A, H±
 - Z' couples to h and A, where A decays to DM
 - Concentrate on largest BR h->bbbar channel

Cross-section table, UFO model, MadGraph cards were provided from ATLAS

Monte Carlo Generation


- UFO model, MadGraph cards were provided from ATLAS
- Several parameters were decided as below
 - m(chi) = 100 GeV
 - tan(beta) = 1
 - g(Z') = 0.8
 - m(H) = m(H+) = m(H-) = 300 GeV

- A->2DM was specified, but h->bbbar was not specified
- m(Z', A) = (600, 300), (1400, 600), (2600, 300) GeV
- Corrected the decay widths of Z' and A due to different masses
- 100K events for each signal samples

Monte Carlo Generation

Cross-section table was provided from ATLAS

Cross-section Comparison

(Z', A)	MG5	ATLAS	[pb]
600, 300	0.4522000	0.4519300	
1400, 600	0.0037490	0.0037460	
2600, 300	0.0020430	0.0020345	

Looks very good!

Object Selection

Leptons

- Loosely defined electrons and muons with Pt > 7 GeV
- Used for vetoing events

Small jets

- anti-kt algorithm with dR = 0.4 cone used for reconstruction
- Central jets : |eta| < 2.5, Pt > 20 GeV
- Forward jets : |eta| > 2.5, Pt > 30 GeV
- no electron candidates within jet more than than dR = 0.2

Large jets

- anti-kt algorithm with dR = 1.0 cone used for reconstruction
- |eta| < 2.0, Pt > 200 GeV

Signal Region

Resolved region

- Use small jets reconstructed with dR 0.4 cone
- Relatively small MET region (MET < 500 GeV)

Merged region

- Use large jets reconstructed with dR 1.0 cone
- Large MET region (MET > 500 GeV)

Selections (resolved)	(a)	(b)	(c)
$E_{\rm T}^{\rm miss} < 500 {\rm GeV}$	0.997	0.606	0.022
$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$	0.890	0.604	0.022
$p_{\rm T}^{\rm miss,trk} > 30 \text{ GeV (not for 2 } b\text{-tags)}$	0.711	0.546	0.020
$\min \left[\Delta \phi \left(\vec{E}_{T}^{miss}, \vec{p}_{T}^{j}\right)\right] > \pi/9$	0.685	0.497	0.017
$\Delta \phi \left(\vec{E}_{T}^{\text{miss}}, \vec{p}_{T}^{\text{miss,trk}} \right) < \pi/2$	0.671	0.480	0.016
$N_j \ge 2$	0.658	0.460	0.014
$p_{T,h}^{\text{leading } j} \ge 45 \text{ GeV}$	0.655	0.459	0.014
$H_{\rm T} > 120 {\rm GeV} {\rm or} 150 {\rm GeV}$	0.651	0.459	0.014
$\Delta\phi\left(\vec{p}_h^{j_1}, \vec{p}_h^{j_2}\right) < 7\pi/9$	0.633	0.441	0.012
$\Delta \phi \left(\vec{E}_{T}^{miss}, \vec{p}_{T,h} \right) > 2\pi/3$	0.620	0.439	0.012
τ veto	0.603	0.424	0.012
$\Delta R(\vec{p}_h^{j_1}, \vec{p}_h^{j_2}) < 1.8$	0.506	0.385	< 0.01
b-jet Veto	0.503	0.383	< 0.01
H _T -Ratio Cut (0.63)	0.499	0.382	< 0.01
$50 < m_{h,reco}/\text{GeV} < 280$	0.481	0.378	< 0.01
N(b-tags) = 2	0.246	0.177	< 0.01
N(b-tags) = 1	0.197	0.164	< 0.01

-		
(a)	(b)	(c)
< 0.01	0.394	0.977
< 0.01	0.375	0.934
< 0.01	0.358	0.834
< 0.01	0.356	0.822
< 0.01	0.353	0.818
< 0.01	0.343	0.798
< 0.01	0.326	0.782
< 0.01	0.325	0.782
< 0.01	0.282	0.705
< 0.01	0.136	0.150
< 0.01	0.147	0.442
	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.394 <0.01 0.375 <0.01 0.358 <0.01 0.356 <0.01 0.353 <0.01 0.343 <0.01 0.326 <0.01 0.325 <0.01 0.282 <0.01 0.136

Cutflow table provided for both signal regions with 3 different mass points

Signal Region

Common

- No isolated electrons or muons (and veto taus)
- MET > 150 GeV
- dPhi(MET, jets), dPhi(MET, track MET) cuts
- #(b jets) = 1 OR 2

Resolved

- MET < 500 GeV
- higgs candidate (h cand.)
 - 2 b jets
 - 1 b jet + leading jet
- dPhi(h cand., MET) > 2pi/3
- HT > 120 or 150 GeV
- h cand. jets HT ratio > 0.63
- dR(h cand. jets) < 1.8

Merged

- MET > 500 GeV
- h cand.= leading large jet
- h cand. large jet HT ratio > 0.43

Resolved Region

Z'600 A300

Z'1400 A600

Z'2600 A300

	MA5	ATLAS	MA5	ATLAS	MA5	ATLAS
MET < 500	0.997	0.997	0.680	0.606	0.088	0.022
MET > 150	0.658	0.890	0.653	0.604	0.080	0.020
Pt trk miss > 30	0.643	0.711	0.648	0.546	0.079	0.017
dphi(MET,jet) > pi/9	0.622	0.685	0.592	0.497	0.071	0.016
dphi(MET,trk miss) < pi/2	0.621	0.671	0.591	0.480	0.071	0.014
# jet >= 2	0.517	0.658	0.495	0.460	0.043	0.014
Pt leading jet > 45	0.486	0.655	0.476	0.459	0.041	0.014
HT > 120 or 150	0.465	0.651	0.471	0.459	0.040	0.014
dphi(higgs jets) < 7pi/9	0.448	0.633	0.439	0.441	0.034	0.012
dphi(MET, higgs) > 2pi/3	0.442	0.620	0.435	0.439	0.033	0.012
tau veto	0.428	0.603	0.417	0.424	0.031	0.012
dR(higgs jets) < 1.8	0.361	0.506	0.361	0.385	0.022	0.010
b jet veto	0.353	0.503	0.356	0.383	0.022	0.010
HT ratio > 0.63	0.321	0.499	0.342	0.382	0.020	<0.01
50 < higgs mass < 280	0.284	0.481	0.325	0.378	0.019	<0.01
# bjet = 2	0.093	0.246	0.110	0.177	0.005	<0.01
# bjet = 1	0.096	0.197	0.106	0.164	0.005	<0.01

8

Merged Region

Z'600 A300

Z'1400 A600

Z'2600 A300

	MA5	ATLAS	MA5	ATLAS	MA5	ATLAS
MET > 500	0.003	<0.01	0.320	0.394	0.912	0.977
Pt trk miss > 30	0.003	<0.01	0.319	0.375	0.910	0.934
dPhi(MET,jet) > pi/9	0.002	<0.01	0.293	0.358	0.784	0.834
dPhi(MET,trk miss) < pi/2	0.002	<0.01	0.293	0.356	0.783	0.822
# fat jet > 0	0.002	<0.01	0.290	0.353	0.778	0.818
tau veto	0.002	<0.01	0.278	0.343	0.728	0.798
b jet veto	0.001	<0.01	0.260	0.326	0.701	0.782
HT ratio > 0.43	0.001	<0.01	0.259	0.325	0.700	0.782
50 < higgs mass < 270	0.001	<0.01	0.251	0.282	0.671	0.705

Issues (1)

Trigger ?

MET trigger is applied but not specified in the paper

	MA5	ATLAS	MA5	ATLAS	MA5	ATLAS
MET < 500	0.997	0.997	0.680	0.606	0.088	0.022
MET > 150	0.658	0.890	0.653	0.604	0.080	0.020

• Electrons and Muons?

Cutflow does not show lepton veto but paper says they veto lepton events

Solution!

Use # of events passing MET > 110 GeV AND no leptons as denominator

Issues (1)

7'COO A'OOO -			
Z'600 A'300	BEFORE	AFTER	ATLAS
trigger & emu veto		1.000	
MET < 500	0.997	0.997	0.997
MET > 150	0.658	0.761	0.890
trk miss > 30	0.643	0.744	0.711
dphi(MET,jet) > pi/9	0.602	0.720	0.685
dphi(MET,trk miss) < pi/2	0.601	0.719	0.671
# jet >= 2	0.517	0.619	0.658
leading jet > 45	0.486	0.581	0.655
HT > 120 or 150	0.465	0.556	0.651
dphi(higgs jets) < 7pi/9	0.448	0.536	0.633
dphi(MET, higgs) > 2pi/3	0.442	0.529	0.620
tau veto	0.428	0.512	0.603
dR(higgs jets) < 1.8	0.361	0.432	0.506
bjet > 0	0.353	0.422	0.503
HT ratio > 0.63	0.321	0.384	0.499
50 < higgs mass < 280	0.284	0.340	0.481
b jet = 2	0.093	0.111	0.246
b jet = 1	0.096	0.115	0.197

Looks better!

Issues (2)

b tagging for large jets?

- 2 b jets inside the large jet is the significant signature for this analysis
- They use b tagging on track jets which are matched to large jets since there
 is no b tagging for the large jet itself
- Is it possible to use track jets information in MadAnalysis5?

Multivariate algorithms are used to identify jets containing *b*-hadrons (*b*-tagging), which are expected in $h \to b\bar{b}$ decays [67, 69]. These algorithms are applied directly to small-*R* jets, while for large-*R* jets they are applied to track-jets matched to large-*R* jets. Track-jets are reconstructed from ID tracks matched to the PV using the anti- k_t algorithm with R = 0.2, and must fulfill $p_T > 10$ GeV and $|\eta| < 2.5$.

Issues (3)

Horizontal divider?

Selections (resolved)	(a)	(b)	(c)
$E_{\rm T}^{\rm miss} < 500~{ m GeV}$	0.997	0.606	0.022
$E_{\rm T}^{\rm miss} > 150~{\rm GeV}$	0.890	0.604	0.022
$p_{\rm T}^{\rm miss,trk} > 30 \text{ GeV (not for 2 } b\text{-tags)}$	0.711	0.546	0.020
$\min \left[\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{j} \right) \right] > \pi/9$	0.685	0.497	0.017
$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} \right) < \pi/2$	0.671	0.480	0.016
$N_j \geq 2$	0.658	0.460	0.014
$p_{\mathrm{T},h}^{\mathrm{leading}j} \ge 45 \;\mathrm{GeV}$	0.655	0.459	0.014
$H_{\rm T} > 120 {\rm GeV} {\rm or} 150 {\rm GeV}$	0.651	0.459	0.014
$\Delta\phi\left(\vec{p}_h^{j_1},\vec{p}_h^{j_2}\right) < 7\pi/9$	0.633	0.441	0.012
$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T},h} \right) > 2\pi/3$	0.620	0.439	0.012
τ veto	0.603	0.424	0.012
$\Delta R\left(\vec{p}_h^{j_1}, \vec{p}_h^{j_2}\right) < 1.8$	0.506	0.385	< 0.01
b-jet Veto	0.503	0.383	< 0.01
H _T -Ratio Cut (0.63)	0.499	0.382	< 0.01
$50 < m_{h, reco} / \text{GeV} < 280$	0.481	0.378	<0.01
N(b-tags $) = 2$	0.246	0.177	< 0.01
N(b-tags) = 1	0.197	0.164	< 0.01

Issues (3)

Horizontal divider?

- Why is there a horizontal divider?
- They only divide the signal regions depending on #(b jets) and MET
- "If 50 < m(h reco) < 280 GeV" is an intermediate cut, why is the sum of "N(b-tags) = 2" and "N(b-tags) = 1" not 0.481?
- Because they already vetoed b jets (requiring 1 or 2 b jets), the events passing "50 < m(h reco) < 280 GeV" should definitely contain 1 or 2 b jets

b-jet Veto	0.503	0.383	< 0.01
$H_{\rm T}$ -Ratio Cut (0.63)	0.499	0.382	< 0.01
$50 < m_{h, reco} / \text{GeV} < 280$	0.481	0.378	<0.01
N(b-tags $) = 2$	0.246	0.177	< 0.01
N(b-tags $) = 1$	0.197	0.164	< 0.01

Issues (4)

Lousy cutflow ?

(a)	(b)	(c)
0.997	0.606	0.022
0.890	0.604	0.022
0.711	0.546	0.020
0.685	0.497	0.017
0.671	0.480	0.016
0.658	0.460	0.014
0.655	0.459	0.014
0.651	0.459	0.014
0.633	0.441	0.012
0.620	0.439	0.012
0.603	0.424	0.012
0.506	0.385	< 0.01
0.503	0.383	< 0.01
0.499	0.382	< 0.01
0.481	0.378	< 0.01
0.246	0.177	< 0.01
0.197	0.164	< 0.01
	0.997 0.890 0.711 0.685 0.671 0.658 0.655 0.651 0.633 0.620 0.603 0.506 0.503 0.499 0.481 0.246	0.997 0.606 0.890 0.604 0.711 0.546 0.685 0.497 0.671 0.480 0.658 0.460 0.655 0.459 0.631 0.459 0.633 0.441 0.620 0.439 0.603 0.424 0.506 0.385 0.503 0.383 0.499 0.382 0.481 0.378 0.246 0.177

Issues (4)

Lousy cutflow?

- #(jets) decided later
- What if the event has no jets? How do they define the dphi(MET,jet)?
- Do they keep the 0 jet event and veto it later?

F1			
$\min \left \Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{j} \right) \right > \pi/9$	0.685	0.497	0.017
$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} \right) < \pi/2$	0.671	0.480	0.016
$N_j \ge 2$	0.658	0.460	0.014
leading I			

- There are some cuts applied in the paper but not shown in the table
- Also there are some cuts in the table but not mentioned in the paper

Conclusion

- Recasting of ATLAS-EXOT-2016-25 has been done
- Looks very good in MC generation level
- We were able to implement most of the cuts in the signal region although some of them were ambiguous
- Some issues need to be discussed with the conveners of ATLAS
- Need to start writing validation note

Thank you