SBT

News from Liquid-Scintillator detector development

Heiko Lacker, HU Berlin 11th SHiP collaboration Meeting 8th of June, 2017, Berlin

On behalf of

Berlin: M. Daniels, M. Ehlert, O. Epler, S. Gerlach, I. Korol, H. L., J.Schliwinski, P. Venkova

Mainz: A. Hollnagel, M. Wurm

Kyiv: O. Bezshyyko , V. Rodin, V. Rodin

- 1) 1st test detector with a large-area WOM: Efficiency and time-resolution measurements
- 2) Photon-transport simulations in WOM and LS
- 3) Towards Testbeam measurements
- 4) Prototype Detector for CDS phase

Reminder: WOM-detection principle

LS: emission spectrum WLS: absorption & re-emission

LS: absorption length & light yield (new)

First LS-filled box with large-area WOM

Efficiency measurements with cosmics

Photoelectrons

Time-resolution measurements

For fixed distance: O(1.6 ns) resolution at high PE yield

Towards a better WOM understanding: Photon transport simulations

Towards a better WOM understanding: Photon transport simulations

Goals for the testbeam measurement in Sep 2017

First time with:

- * LAB (+PPO)
- * Reflecting foil (Lumirror or Tyvek)

<u>Goals:</u>

- * Light yield and efficiency measurements
- * Time and spatial resolution (with more than 1 WOM)
- * Dependence on particle's incident angle and entrance point
- * Response to different particle species (muons, hadrons, electrons)
- * For electrons: produce also pre-shower with 3 cm steel plate

Readout:

Hamamatsu R1924A

WAVECATCHER (purchased from LAL)

Test-detector design

Plan: Prototype detector for CDS phase

 Construct a large detector segment of O(2m x 2m) with curved walls as
 close to vessel design as possible

Technical questions to be addressed:

- * High-quality WOM+lightguide made out of one piece
- * Deployment of WOMs (LS pressure, LS tightness)
- * Deployment of reflecting foils
- * Proof-of-Principle: LAB-PPO mixing
- * Proof-of-Principle: Nitrogen flushing
- * Proof-of-Principle: LS filling/exchange
- * Prototype electronics for PMT readout
- * SiPM as alternative photosensors and corresponding readout electronics
- * Testbeam measurements with muons, hadrons, electrons & photons

Summary

- 1) 1st test detector with a large-area WOM:
 ε > 99% well in reach (using LAB and reflecting foils)
 LS+WOM time-resolution measurements: O(1.6 ns)
- 2) Photon-transport simulations in WOM and LS help to understand performance and possible improvements
- 3) Test detector with multiple WOMs being prepared for September2017 testbeam
- 4) Plan for a large-scale prototype detector for CDS phase to address a number of technical questions