

STATUS OF THE CHARM CROSS SECTION MEASUREMENT

A. Di Crescenzo, A. Iuliano

University of Napoli and INFN

11th SHiP Collaboration Meeting CERN, 9th June 2017

CONCEPTUAL DESIGN

- Motivation:
 - study charm production in the SHiP target
 - measure for the first time charm production in hadron cascades
- Double-differential charm production cross-section measurement $(d^2\sigma/dEd\theta)$
- ▶ Proton collisions in Mo target instrumented with nuclear emulsions
- Nuclear emulsions as tracking detector
- Measurement of charm daughters charge and momentum with Spectrometer
- Muon identification with Muon Filter

INSTRUMENTATION OF TARGET

- ▶ Use of a replica of the SHiP target with smaller section: 10x10 cm²
- ▶ Exactly the same TZM, W and Ta distribution
- Nuclear emulsions used as micrometric tracking device to identify charm production and decay

- ▶ Emulsion Cloud Chamber (ECC) technique employed: sampling of target material with nuclear emulsions
- Sampling of passive material: 1 mm,2mm, 3 mm
- Build ECC chambers to study the charm production in different sections of the target
- Instrumentation of first and second λ_I allows the study of a large fraction of charmed hadrons

Position distribution along beam axis of charm production vertices in the target

Fraction of interactions within $2\lambda_I$

- Primary 85%
- ► Secondary 52%

CHARMED HADRONS

Charmed hadron flight length

PRIMARY PROTONS

CASCADE PRODUCTION

CHARMED HADRONS

Charmed hadron momentum

▶ PRIMARY PROTONS

CASCADE PRODUCTION

DECAY PRODUCTS

Charm daughters momentum

▶ PRIMARY PROTONS

▶ CASCADE PRODUCTION

RUN CONFIGURATION

- ▶ Instrumentation of different portions of the target with emulsions
- ▶ ECC always the most downstream part of the target to let charm daughters reach the spectrometer
- Target modules are retained upstream of the ECC

MOTION OF THE TARGET

- ▶ Motion of target required to have protons uniformly distributed on a 10x10 cm² surface
- Optimization of the velocity of the table: maximization of proton uniformity (minimization of a χ^2 function)
 - minimization of the number of spills *Ns*
- Assumption: proton beam with gaussian shape, σ =0.5 cm
- Motion of the target
- along x-axis during the spill (~5s) -
- along y-axis between two spills |

Result of optimization: $v_x = 2 \text{ cm/s}$ $\Delta y = 1.0 \text{ cm}$ Ns = 10

- Design of moving table(N. D'Ambrosio LNGS)
 - micrometric precision
 - support ~20 kg target

First test of a prototype for light target (~1kg) will be tested in September 2017

EXPOSURE PLAN

Number of integrated pot per run driven by the maximum number of tracks that can be integrated in emulsion films

Exposure needed to observe 10k charmed pairs: ~ $8x10^7$ pot

1 Density: 10³ tracks/mm²

900 x ECC1 x 5 x 10⁴ pot 660 x ECC2 x 4 x 10⁴ pot

Total emulsion surface (3mm sampling) ~ 750 m²

2 Limit density: 3x10³ tracks/mm²

 $300 \times ECC1 \times 1.6 \times 10^5 \text{ pot}$

220 x ECC2 x 1.2 x 10⁵ pot

Total emulsion surface (3mm sampling) ~ 250 m²

EXPOSURE PLAN

2018 EXPOSURE: OPTIMIZATION RUN

- ▶ Integrate ~10% of total statistics
- ▶ Test different samplings: 1 mm, 2mm, 3 mm
- ▶ Build 20÷40 ECC, corresponding to ~25 m² emulsion surface
- ▶ Exposure with different integrated density: from 10⁴ to 10⁵ pot
- Optimize beam parameters and exposure time
- Test moving table
- Develop and optimize of tracking/reconstruction algorithms
- First physics results

EXPERIMENTAL LAYOUT @H4

Beam

(implementation in FairShip by A. Iuliano)

EVENT SIMULATION

- ▶ Proton beam: gaussian shape, σ =0.5cm
- ▶ Target: ECC1 (~0.8 λ_I)
- ▶ 1 spill (5s): 10⁴ protons
- ▶ 2000 protons/s
- ▶ 56% interacting in the target
- ▶ 44% punch-through

(implementation in FairShip by A. Iuliano)

EXPERIMENTAL LAYOUT

MAGNETIC SPECTROMETER:

▶ **Upstream** station T1: 13 x 11 cm²

T2: 20 x 20 cm²

▶ **Downstream** station T3: 150 x 200 cm²

T4: 150 x 200 cm²

• Requirements: measurement of (x,y) and (θ_x,θ_y) in both stations

MUON FILTER:

• 6 planes 200 x 200 cm²

▶ A "typical" charm event in T1

Momentum distribution in T1

- ▶ High **occupancy** in the first spectrometer plane due to low energy electrons
- Necessary to deflect/absorb electrons before they reach T1

- ▶ Solution under investigation: magnetic field between target and T1
- Magnetized region 8 cm-thick (highlighted in yellow)
- ▶ 1T uniform field along y-axis

- ▶ Reduction of electrons in T1: ~factor 3x
- Larger distance between ECC and T1 and therefore makes the pattern matching more challenging
- ▶ MISiS University (Moscow) is working at the magnet design

- ▶ Track density (average): 0.7 tracks/cm²
- ▶ Track density (central region): 10 tracks/cm²
- The magnetic field would imply a larger distance between ECC and T1 and therefore makes the pattern matching more challenging

Detector option under investigation:

Atlas FE-I4 silicon detectors (M. Cristinziani, Bonn University)

- 50 μ m × 250 μ m pixel size
- position resolution (2 layers): $\sim 10 \ \mu m$
- total width: $\sim 400 \ \mu m$
- high rate capability
- high occupancy capability
- sensor surface ~ 4 cm²
- array 3x3: 6x6 cm²
- possible configuration -> T1: 4 layers, T2: 2 layers

- Detector options under investigation:
 - 1) Scintillating fiber trackers (A. Malinin, V. Shevchenko)
 - 2) Drift Tubes used for muon flux measurement
 - with the addition of high granularity detector in the central high occupancy region

LEGEND

★ Muon
■ e+/e■ hadron

Track density (average): 0.002 tracks/cm²

Track density (central region): 0.2 tracks/cm²

- Solution under investigation:
 - insert GEM chambers in the central region
 - COMPASS triple-GEM trackers 30x30 cm²
 - 400 μm pitch
 - position resolution: $<100 \mu m$
 - in contact with A. Bressan for chambers availability in 2018 run

45°

MUON FILTER

- Central hole (R=2.5 cm) foreseen in the Muon Filter slabs
 - 1) Rejection of proton punch-through interactions
 - 2) Avoid high density area in RPC planes
- ▶ 6 planes 2 x 2 m²
- Sensitive planes: RPC
- ▶ Passive material: 34 cm-thick iron slabs

FRONTAL VIEW

RPC CONSTRUCTION

- Joint project between INFN and KODEL from Korea University (S. Park and K.S. Lee)
- ▶ KODEL: RPC construction
- ▶ INFN (Bari and Napoli): readout electronics

MUON FILTER

Average number of hits in RPC planes per interacting proton

- Several charged particles per event
- em/had showers not totally absorbed in iron slabs
- Muon track non the unique in the downstream layers
- Tracking algorithm to be implemented for performances evaluation
- Detector layout in terms of passive material thickness and position of sensitive planes under optimization

BACKGROUND STUDIES

BACKGROUND EVALUATION

Dominant background for charm search: hadronic re-interactions

- ▶ Lever arms for signal/background discrimination:
 - observation of nuclear fragment at the hadron interaction point
 - exploit kinematical features (MVA analysis)

HADRONIC RE-INT. SIMULATION

▶ FLUKA simulation of hadronic re-interactions in TZM/emulsion ECC chamber (A. Iuliano)

- Monte Carlo simulation used in OPERA: FLUKA with PEANUT model
 - http://www.slac.stanford.edu/cgiwrap/getdoc/slac-pub-10813.pdf
- Validation with test beam data: π- at 2,4,10 GeV/c in ECC brick

Initial Kinetic energy

- Simulated beam: π-
- Energy spectrum: pions produced in proton interaction in FairShip

HADRONIC RE-INT. SIMULATION

Fragment: - at least 1 emulsion film crossed

- $-\tan(\theta) < 3.0$
- $-\beta < 0.7$

Forward-going track: - at least 3 emulsion film crossed - $tan(\theta)$ <1 - β >0.7

Number of forward-going tracks

Number of nuclear fragments

KINEMATICAL SELECTION

Impact parameter (signal region)

NB: signal and background distribution normalized to unity

BACKGROUND-YIELD EVALUATION

► Charm decay channels: c→1h, c→3h

Selection Criteria	Probability
Path length<6 mm	3,4%
Impact parameter> 10 μm	2,9%
Kink angle>20 mrad	2,8%
1 or 3 forward-going tracks	1,0%
no nuclear fragments	0,45%

In progress: Kinematical selection based on total momentum, transverse momentum, invariant mass

SUMMARY

- Overall experimental layout outlined
- Magnetic field immediately downstream of the target helps reducing the electron multiplicity
- Challenge: track connection between moving target and fixed spectrometer, with a gap of a few cm
- Magnetic spectrometer: new detector options to cope with high occupancy under investigation
- Muon filter: RPC technology, sampling to be optimized
- ▶ 2018 exposure will act as "optimization run" for the charm cross-section measurement
- Hadronic background simulation performed in FLUKA. Exploit kinematical features to reduce hadronic background contamination

BACK-UP SLIDES

Muons In RPC

▶ Spatial distribution of muons produced by charmed hadron decay

HITS IN RPC CELL: 2x2 mm²

HITS IN THE RPC

▶ Number of hits in RPC strips (2 cm-wide) along x and y axes

TRACKING CAPABILITY TEST

To be done: analysis of nuclear emulsions from **E653** experiment (Fermilab, '90)

▶ Density: 10³ tracks/mm²

600 GeV negative pions

800 GeV protons

MOTION OF THE TARGET

- ▶ Motion of target required to have protons uniformly distributed on a 10x10 cm² surface
- ▶ Design of a moving table in progress (details in N. D'ambrosio's talk)

Motion of the target

- along x-axis during the spill (~5s) ——>
- along y-axis between two spills

MOTION OF THE TARGET

- ▶ Motion of target required to have protons uniformly distributed on a 10x10 cm² surface
- ▶ Design of a moving table in progress (details in N. D'ambrosio's talk)
- Optimization of the velocity of the table: maximization of proton uniformity (minimization of a χ^2 function)
 - minimization of the number of spills Ns
- Assumption: proton beam with gaussian shape, σ =0 .5cm

INSTRUMENTATION OF TARGET

- Each ECC is made by a sequence of 3mm-thick TZM planes interleaved with 290 μm-thick nuclear emulsion films, with a total thickness of $\sim 1\lambda_I$
- **ECC1**: study charm production in first λ_I
- ECC2: study charm production in second λ_I

Plates	ECC1	ECC2	
TZM (3mm)	41	38	
λ	0,81 0,75		
PET (5 mm)	2	4	
Ta (1 mm)	6 10		
Emulsion (0.29 mm)	47	48	

THE TARGET REPLICA

- ▶ Replica of the SHiP target with smaller section: 10x10 cm²
- ▶ Exactly the same TZM, W and Ta distribution
- Ta cladding not needed: replaced by Ta slabs to preserve number of λ_I
- ▶ Water cooling not needed: 5 mm-thick PET slabs instead of 5 mm H₂0

HITS IN THE SPECTROMETER

LEGEND

★ Muon

■ e+/e-

hadron

▶ A "typical" charm event as seen in the four spectrometer planes

HITS IN THE SPECTROMETER

- ▶ Zoom in the most central region of the first Spectrometer plane P1
- Pitch: 200 x 200 μm² (size of the histogram bin)

MOTIVATION

- Charm production in **proton interactions** and in **hadron cascades** in the SHiP target crucial for HNL normalization and v_{τ} cross-section measurements
- Current knowledge of inclusive associated charm cross-section measurement

$$\sigma_{CC} = (18.1 \pm 1.7) \, \mu barn \, (NA27^*)$$

 Missing information: charm production in hadron cascades (factor>2) and charm hadron spectra

Angular and energy spectra available only for 500 GeV pions in E791

Comparison between Pythia 6.4 generator and NLO calculations, *JHEP 0709 (2007)*: discrepancy in p_T spectra

INSTRUMENTATION OF TARGET

- Each ECC is made by a sequence of 3mm-thick TZM planes interleaved with 290 μm-thick nuclear emulsion films, with a total thickness of $\sim 1\lambda_I$
- ▶ ECC1: study charm production in first λ_I
- **ECC2**: study charm production in second λ_I

Plates	ECC1	ECC2	
TZM (3mm)	41	38	
λ	0,81 0,75		
PET (5 mm)	2	4	
Ta (1 mm)	6 10		
Emulsion (0.29 mm)	47	48	

CHARM DETECTION EFFICIENCY

TOPOLOGICAL SELECTION	Charmed hadrons decaying in the target	91%	89%
	Charmed hadrons detected in emulsion	51%	29%
			4 604
KINEMATICAL SELECTION	At least one daughter enter in the spectrometer	38%	16%
	At least one daughter cross the spectrometer	31%	11%
	Charge & momentum measurement	31%	11%
	Particle ID	30%	11%
	OVERALL EFFICIENCY (ε ^{KIN})	30%	11%

- Detector options under investigation:
 - 1) Scintillating fiber trackers (A. Malinin, V. Shevchenko)
 - 2) Atlas FE-I4 silicon detectors (M. Cristinziani, Bonn University)
 - 50 μ m × 250 μ m pixel size

(see M. Cristinziani's slides)

- position resolution (2 layers): $\sim 10 \ \mu m$
- total width: $\sim 400 \, \mu \text{m}$
- high rate capability
- high occupancy capability
- sensor surface ~ 4 cm²
- array 3x3: 6x6 cm²
- possible configuration -> T1: 4 layers, T2: 2 layers

