STATUS OF THE CHARM CROSS SECTION MEASUREMENT

A. Di Crescenzo, A. Iuliano

University of Napoli and INFN

11th SHiP Collaboration Meeting
CERN, 9th June 2017
Motivation:

- study charm production in the SHiP target
- measure for the first time charm production in hadron cascades

Double-differential charm production cross-section measurement \((d^2\sigma/dE_d\theta) \)

Proton collisions in Mo target instrumented with nuclear emulsions

Nuclear emulsions as tracking detector

Measurement of charm daughters charge and momentum with Spectrometer

Muon identification with Muon Filter
INSTRUMENTATION OF TARGET

- Use of a replica of the SHiP target with smaller section: 10x10 cm²
- Exactly the same TZM, W and Ta distribution
- Nuclear emulsions used as micrometric tracking device to identify charm production and decay

- Emulsion Cloud Chamber (ECC) technique employed: sampling of target material with nuclear emulsions
- Sampling of passive material: 1 mm, 2 mm, 3 mm
- Build ECC chambers to study the charm production in different sections of the target
- Instrumentation of first and second λ_I allows the study of a large fraction of charmed hadrons

- Position distribution along beam axis of charm production vertices in the target

PRIMARY PROTON INTERACTIONS

CASCADE PRODUCTION

- Fraction of interactions within $2\lambda_I$
 - Primary 85%
 - Secondary 52%
CHARMED HADRONS

Charmed hadron flight length

- PRIMARY PROTONS

- CASCADE PRODUCTION

\(<L> \sim 3.3 \text{ mm}\)

\(<L> \sim 2 \text{ mm}\)
CHARMED HADRONS

Charmed hadron momentum

- PRIMARY PROTONS
 - Mean: 42.23 ± 0.3274
 - RMS: 32.01 ± 0.2315

- CASCADE PRODUCTION
 - Mean: 26.36
 - RMS: 22.19

\(<p> \sim 42 \text{ GeV}\)

\(<p> \sim 26 \text{ GeV}\)
Decay Products

Charm daughters momentum

- PRIMARY PROTONS
- CASCADE PRODUCTION

\[\langle p \rangle \sim 11 \text{ GeV/c} \]

\[\langle p \rangle \sim 7 \text{ GeV/c} \]
Run Configuration

- Instrumentation of different portions of the target with emulsions
- ECC always the most downstream part of the target to let charm daughters reach the spectrometer
- Target modules are retained upstream of the ECC
Motion Of The Target

- Motion of target required to have protons uniformly distributed on a 10x10 cm2 surface
- Optimization of the velocity of the table: - maximization of proton uniformity (minimization of a χ^2 function)
 - minimization of the number of spills N_s

- Assumption: proton beam with gaussian shape, $\sigma = 0.5$ cm
- Motion of the target
 - along x-axis during the spill (~5s)
 - along y-axis between two spills

\[
\text{Result of optimization: } v_x = 2 \text{ cm/s} \\
\Delta y = 1.0 \text{ cm} \\
N_s = 10
\]

- Design of moving table (N. D'Ambrosio - LNGS)
 - micrometric precision
 - support ~20 kg target

- First test of a prototype for light target (~1kg) will be tested in September 2017
EXPOSURE PLAN

- Number of integrated pot per run driven by the maximum number of tracks that can be integrated in emulsion films

- Number of tracks integrated in emulsion per incoming proton

Exposure needed to observe 10k charmed pairs: ~ 8x10^7 pot

1. Density: 10^3 tracks/mm^2
 - 900 x ECC1 x 5 x 10^4 pot
 - 660 x ECC2 x 4 x 10^4 pot
 - Total emulsion surface (3mm sampling) ~ 750 m^2

2. Limit density: 3x10^3 tracks/mm^2
 - 300 x ECC1 x 1.6 x 10^5 pot
 - 220 x ECC2 x 1.2 x 10^5 pot
 - Total emulsion surface (3mm sampling) ~ 250 m^2
Integrate ~10% of total statistics

Test different samplings: 1 mm, 2 mm, 3 mm

Build 20÷40 ECC, corresponding to ~25 m² emulsion surface

Exposure with different integrated density: from 10^4 to 10^5 pot

Optimize beam parameters and exposure time

Test moving table

Develop and optimize of tracking/reconstruction algorithms

First physics results
Experimental Layout @H4

(implementation in FairShip by A. Iuliano)
EVENT SIMULATION

- Proton beam: gaussian shape, \(\sigma = 0.5 \text{cm} \)
- Target: ECC1 (\(\sim 0.8 \lambda_I \))
- 1 spill (5s): \(10^4 \) protons
- 2000 protons/s
- 56\% interacting in the target
- 44\% punch-through

(implementation in FairShip by A. Iuliano)
MAGNETIC SPECTROMETER:

- **Upstream** station
 T1: 13 x 11 cm²
 T2: 20 x 20 cm²

- **Downstream** station
 T3: 150 x 200 cm²
 T4: 150 x 200 cm²

- Requirements: measurement of \((x,y)\) and \((\theta_x, \theta_y)\) in both stations

MUON FILTER:

- 6 planes 200 x 200 cm²
- A “typical” charm event in T1

- Momentum distribution in T1

- High occupancy in the first spectrometer plane due to low energy electrons
- Necessary to deflect/absorb electrons before they reach T1
Solution under investigation: magnetic field between target and T1

- Magnetized region 8 cm-thick (highlighted in yellow)
- 1T uniform field along y-axis

- Reduction of electrons in T1: ~factor 3x
- Larger distance between ECC and T1 and therefore makes the pattern matching more challenging

- MISiS University (Moscow) is working at the magnet design

Track density (average): 0.7 tracks/cm²
Track density (central region): 10 tracks/cm²

- The magnetic field would imply a larger distance between ECC and T1 and therefore makes the pattern matching more challenging
Detector option under investigation:

Atlas FE-I4 silicon detectors (M. Cristinziani, Bonn University)

- 50 µm × 250 µm pixel size
- position resolution (2 layers): ∼ 10 µm
- total width: ∼ 400 µm
- high rate capability
- high occupancy capability
- sensor surface ∼ 4 cm²
- array 3x3: 6x6 cm²
- possible configuration -> T1: 4 layers, T2: 2 layers
MAGNETIC SPECTRO - DOWNSTREAM STATION

- Detector options under investigation:
 1) Scintillating fiber trackers (A. Malinin, V. Shevchenko)
 2) Drift Tubes used for muon flux measurement
 • with the addition of high granularity detector in the central high occupancy region

- Solution under investigation:
 • insert GEM chambers in the central region
 • COMPASS triple-GEM trackers 30x30 cm
 • 400 μm pitch
 • position resolution: <100 μm
 • in contact with A. Bressan for chambers availability in 2018 run

- Track density (average): 0.002 tracks/cm²
- Track density (central region): 0.2 tracks/cm²

A “typical” charm event in T3

LEGEND
- Muon
- e+/e-
- hadron

Track density (average): 0.002 tracks/cm²
Track density (central region): 0.2 tracks/cm²
MUON FILTER

- Central hole (R=2.5 cm) foreseen in the Muon Filter slabs
 1) Rejection of proton punch-through interactions
 2) Avoid high density area in RPC planes

- 6 planes 2 x 2 m²
- Sensitive planes: RPC
- Passive material: 34 cm-thick iron slabs

FRONTAL VIEW

RPC CONSTRUCTION

- Joint project between INFN and KODEL from Korea University (S. Park and K.S. Lee)
- KODEL: RPC construction
- INFN (Bari and Napoli): readout electronics
Average number of hits in RPC planes per **interacting** proton

- Several charged particles per event
- em/had showers not totally absorbed in iron slabs
- Muon track non the unique in the downstream layers
- Tracking algorithm to be implemented for performances evaluation
- Detector layout in terms of passive material thickness and position of sensitive planes under optimization
BACKGROUND STUDIES
Background Evaluation

- Dominant background for charm search: hadronic re-interactions

SIGNAL
- TZM plate
- Emulsion film
- Proton
- Ds-
- D+
- h
- h
- h

BACKGROUND
- TZM plate
- Emulsion film
- Proton
- h
- h
- h
- h

- Lever arms for signal/background discrimination:
 - Observation of nuclear fragment at the hadron interaction point
 - Exploit kinematical features (MVA analysis)
Hadronic Re-Int. Simulation

- FLUKA simulation of hadronic re-interactions in TZM/emulsion ECC chamber (A. Iuliano)

- Monte Carlo simulation used in OPERA: FLUKA with PEANUT model

- Validation with test beam data: \(\pi^- \) at 2, 4, 10 GeV/c in ECC brick

- Simulated beam: \(\pi^- \)
- Energy spectrum: pions produced in proton interaction in FairShip
Fragment: - at least 1 emulsion film crossed
- \(\tan(\theta) < 3.0 \)
- \(\beta < 0.7 \)

Forward-going track: - at least 3 emulsion film crossed
- \(\tan(\theta) < 1 \)
- \(\beta > 0.7 \)
KINEMATICAL SELECTION

- **Impact parameter (signal region)**
 - CHARM SIGNAL
 - HAD BACKGROUND

- **Kink angle (1 prong)**
 - CHARM SIGNAL
 - HAD BACKGROUND

NB: signal and background distribution normalized to unity
Background-Yield Evaluation

- Charm decay channels: $c \rightarrow 1h, c \rightarrow 3h$

<table>
<thead>
<tr>
<th>Selection Criteria</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path length < 6 mm</td>
<td>3.4%</td>
</tr>
<tr>
<td>Impact parameter > 10 μm</td>
<td>2.9%</td>
</tr>
<tr>
<td>Kink angle > 20 mrad</td>
<td>2.8%</td>
</tr>
<tr>
<td>1 or 3 forward-going tracks</td>
<td>1.0%</td>
</tr>
<tr>
<td>no nuclear fragments</td>
<td>0.45%</td>
</tr>
</tbody>
</table>

In progress: Kinematical selection based on total momentum, transverse momentum, invariant mass
Overall experimental layout outlined

Magnetic field immediately downstream of the target helps reducing the electron multiplicity

Challenge: track connection between moving target and fixed spectrometer, with a gap of a few cm

Magnetic spectrometer: new detector options to cope with high occupancy under investigation

Muon filter: RPC technology, sampling to be optimized

2018 exposure will act as “optimization run” for the charm cross-section measurement

Hadronic background simulation performed in FLUKA. Exploit kinematical features to reduce hadronic background contamination
Back-Up Slides
Spatial distribution of muons produced by charmed hadron decay
HITS IN RPC CELL: 2x2 mm2
Hits In The RPC

- Number of hits in RPC strips (2 cm-wide) along x and y axes

![Graphs showing x and y distributions for RPC planes R2 and R5](image-url)
To be done: analysis of nuclear emulsions from E653 experiment (Fermilab, ‘90)

- Density: 10^3 tracks/mm2
- Limit density: 3×10^3 tracks/mm2

600 GeV negative pions

800 GeV protons
Motion of the target required to have protons uniformly distributed on a 10x10 cm2 surface

- Design of a moving table in progress (details in N. D’ambrosio’s talk)

Motion of the target
- along x-axis during the spill (~5s)
- along y-axis between two spills
Motion of the Target

- Motion of target required to have protons uniformly distributed on a 10x10 cm² surface
- Design of a moving table in progress (details in N. D’ambrosio’s talk)
- Optimization of the velocity of the table: - maximization of proton uniformity (minimization of a χ^2 function)
 - minimization of the number of spills Ns
- Assumption: proton beam with gaussian shape, $\sigma=0.5\text{cm}$
INSTRUMENTATION OF TARGET

- Each ECC is made by a sequence of 3mm-thick TZM planes interleaved with 290 μm-thick nuclear emulsion films, with a total thickness of $\sim 1\lambda_I$.
- **ECC1**: study charm production in first λ_I
- **ECC2**: study charm production in second λ_I

<table>
<thead>
<tr>
<th>Plates</th>
<th>ECC1</th>
<th>ECC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZM (3mm)</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>λ</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>PET (5 mm)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ta (1 mm)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Emulsion (0.29 mm)</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>
THE TARGET REPLICA

- Replica of the SHiP target with smaller section: 10x10 cm²
- Exactly the same TZM, W and Ta distribution
- Ta cladding not needed: replaced by Ta slabs to preserve number of λ_I
- Water cooling not needed: 5 mm-thick PET slabs instead of 5 mm H₂O
HITS IN THE SPECTROMETER

- A “typical” charm event as seen in the four spectrometer planes
Zoom in the most central region of the first Spectrometer plane \textbf{P1}

- Pitch: 200 \times 200 \mu m^2 (size of the histogram bin)
MOTIVATION

- Charm production in **proton interactions** and in **hadron cascades** in the SHiP target crucial for HNL normalization and ν_τ cross-section measurements
- Current knowledge of inclusive associated charm cross-section measurement

\[\sigma_{CC} = (18.1 \pm 1.7) \mu\text{barn} \ (\text{NA27}^*) \]

- Missing information: charm production in **hadron cascades** (factor>2) and charm hadron spectra

- Angular and energy spectra available only for 500 GeV pions in E791

\[\text{* Phys.Rept. 433 (2006) 127} \]
\[\text{* Z. Phys. C40 (1998) 321} \]

- Comparison between Pythia 6.4 generator and NLO calculations, **JHEP 0709 (2007)**: discrepancy in p_T spectra

\[\text{Entries} \ 104542 \]
\[\text{Mean} \ 1.011 \]
\[\text{RMS} \ 0.6015 \]

\[\text{Entries} \ 80274 \]
\[\text{Mean} \ 1.111 \]
\[\text{RMS} \ 0.6404 \]

\[\text{*Phys. Lett. B462 (1999) 225.} \]
Each ECC is made by a sequence of 3mm-thick TZM planes interleaved with 290 μm-thick nuclear emulsion films, with a total thickness of \(\sim 1\lambda_I \)

- ECC1: study charm production in first \(\lambda_I \)
- **ECC2**: study charm production in second \(\lambda_I \)
Charmed Detection Efficiency

TOPOLOGICAL SELECTION
- Charmed hadrons decaying in the target: 91% (91%) vs. 89% (89%)
- Charmed hadrons detected in emulsion: 51% (51%) vs. 29% (29%)

KINEMATICAL SELECTION
- At least one daughter enter in the spectrometer: 38% (38%) vs. 16% (16%)
- At least one daughter cross the spectrometer: 31% (31%) vs. 11% (11%)
- Charge & momentum measurement: 31% (31%) vs. 11% (11%)
- Particle ID: 30% (30%) vs. 11% (11%)

OVERALL EFFICIENCY (ε^KIN)
- Single-Charm: 30%
- Double-Charm: 11%
Detector options under investigation:

1) Scintillating fiber trackers (A. Malinin, V. Shevchenko)
2) Atlas FE-I4 silicon detectors (M. Cristinziani, Bonn University)
 - 50 µm × 250 µm pixel size
 - position resolution (2 layers): ∼ 10 µm
 - total width: ∼ 400 µm
 - high rate capability
 - high occupancy capability
 - sensor surface ∼ 4 cm²
 - array 3x3: 6x6 cm²
 - possible configuration -> T1: 4 layers, T2: 2 layers

(see M. Cristinziani's slides)