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Part I: Light dark matter

Inar Timiryasov, Kyrylo Bondarenko,
Alexey Boyarsky, Oleg Ruchayskiy
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Light dark matter

Definition 1: Thermal relic dark matter with the mass lighter than few GeV

Definition 2: Dark matter that can be found at SHiP
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Reminder: Weakly interacting massive particles

Original idea of Weakly Interacting Massive Particles (WIMP dark matter)
goes back to Lee & Weinberg (Phys. Rev. Lett. 1977)

Their paper was titled “Cosmological lower bound on heavy-neutrino masses”

Assume a new weakly interacting stable particle (called “heavy neutrino” in
the original paper)

These particles were in thermal equilibrium in the early Universe so, their
concentration is given by Boltzmann distribution (for mχ � T )

nχ(T ) =

(
mχT

2π

)3/2

e−mχ/T

They keep the equilibrium number density via annihilation χ+ χ̄→ SM + SM

At some moment their annihilation rate is not enough to maintain the
equilibrium number density ⇒ freeze out
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Light WIMPs
See the talk by P. Fayet

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 
find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 
The current entropy density is so N 4000 cmm3, and the critical density today is 
pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 
present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 
inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 
actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 
the solid curve is the equilibrium abundance. From [31]. 

The weaker you interact the larger is your
number density

Ωχh
2 ∼ 3 · 10−27 cm3/sec

〈σAv〉

Annihilation cross-section depends on the
interaction strength and on the

number of final states

σA ∼ G 2
F m2

χ Nchannels

For mass mχ < mb annihilation into the SM channels leads to a too small
cross-section ⇒ too large DM abundance

Lee & Weinberg took GF as an interaction strength and got the lower bound mχ > 5 GeV
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Light WIMP ⇒ extra light states

Light DM requires more light states to
annihilate into (scalars, vectors, . . . )

Examples:

Light scalar φ (scalar portal mediator)

LDM−φ = χ̄
(
gχ + γ5g

′
χ

)
φχ

Light vector portal Aµ

LDM−A′ = χ̄γµA′µ

(
gχ + γ5g

′
χ

)
χ

. . . it is also possible that DM is scalar rather than
fermion
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Mediator couples WIMP to Standard Model fermions and determines
DM-nucleon (or DM-electron) cross-section
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From LDM to Self-Interacting Dark Matter (SIDM)

Exchange of φ mediates DM-DM scattering

If mφ < mDM there are two regimes:
– High-energy:

σann ∼
α2
χ

m2
DMv2

,

where αχ is a coupling constant in the Dark Sector.
– Low-energy: (mDMv < mφ)

σscat ∼
α2
χm

2
DM

m4
φ

,

For LDM it is easy to get high self-interaction cross-section, making LDM a
self-interacting dark matter (SIDM)
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Astrophysical manifestations of SIDM

In galaxies and galaxy clusters density scales as r−γ in the central parts. Pure
Cold DM simulations predict γ = 1 (cusps), but it is observed γ < 1 in some
objects (cores) (core-cusp problem)

The possible solution is the self-interacting DM (SIDM). At high densities,
self interaction play a role for DM particles, which self-scatter in halos and
wash out cusps
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SIDM. Connection to the particle physics

The DM profile for SIDM depends on the σ/m ratio. To get the right core
properties one should take the specific value of it.

Theory,σ/m=0.01cm2/g
Experiment
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Bondarenko et al. (to appear)

The mass of the mediator weakly depends on σ/m value,

mmediator ∼ 12 MeV
( αχ

0.01

)1/2 ( mDM

1 GeV

)1/4
(
σ/mDM

1 cm2/g

)−1/4

Works for light (SHiP-range) mediators!
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Light WIMP direct detection

At small WIMP masses
laboratory direct detection
sensitivity deteriorates
quickly

However for such particles
SHiP becomes a tool for
dark matter detection

101 102 103 104 105

WIMP Mass [GeV/c2]

10−2

10−1

100

101

102

103

W
IM

P–
nu

cl
eo

n
cr

os
s

se
ct

io
n

[z
b]

PandaX
–II 2016XENON100 2016Dark

Side–50 2015

LUX WS2013

LUX WS2014–16

LUX WS2013+WS2014–16

8B

10−46

10−45

10−44

10−43

10−42

W
IM

P–
nu

cl
eo

n
cr

os
s

se
ct

io
n

[c
m

2 ]

[LUX Collaboration] Phys. Rev. Lett. 118 (2017) 021303
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Detection strategy at SHiP

The detection of the DM particles in the SHiP neutrino detector with the
photoemulsion using DM scattering on electrons or the nuclei

To distinguish from neutrino scattering one can use the superb resolution of
the photoemulsion to measure the kinimatical difference of the events.

Another interesting possibility to
distinguish DM event from
background: consider reaction
χ+ e/N → χ+ e/N + A′, where A′

is the light mediator. It could decay
in decay volume and be detected by
SHiP main detector.

A0

A0

�

Z

e+

e�

�

Z

e0 e0

✏e

✏e

Signatures and search strategy depend on type of dark matter (fermion, scalar) ,
type of mediator (scalar, vector) and relation between their masses
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Scalar Dark Matter and Vector Mediator: reference model

Four parameters:

mA′ , mχ, ε αD ≡ e′2/4π

Tree-level annihilation cross
section:

σvrel =
8π

3

ε2ααDm
2
χv

2
rel

(m2
A′ − 4m2

χ)2 + m2
A′ΓA′

.

For mA′ � mχ, ΓA′ it scales with

y ≡ ε2αD

(
mχ

mA′

)4

E. Izaguirre, G. Krnjaic, P. Schuster and

N. Toro, Phys. Rev. Lett. 115, no. 25,

251301 (2015) mχ/mA′ = 1/3, αD = 0.5
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Production at fixed target

Two main production channels:

1 Direct production.
Proton-proton bremsstrahlung (in the WW
approximation)

Conservative: D. Gorbunov, A. Makarov, IT, Phys.Rev.

D91 (2015) 3, 035027

Optimistic: P. deNiverville, C. Y. Chen, M. Pospelov and

A. Ritz, Phys. Rev. D 95 (2017) no.3, 035006 resonant

vector meson mixing — to compare to others

2 Production in radiative meson decays:
π0 → γA′, A′ → χ†χ

In the narrow width approximation (assuming that the hidden photon is
sufficiently long-lived, ΓA′ � mA′)

σ(pN → A′ → χχ̄) = σ(pN → A′)Br(A′ → χχ̄)
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Scattering of DM: all formulae are known!

The elastic DM-electron scattering cross section

dσχe→χe
dEe

= 4πε2αα′
2meE

2
in − (2meEin + m2

χ)(Ee −me)

(E 2
in −m2

χ)(m2
A′ + 2meEe − 2m2

e)2
(1)

Ee , Ein are the energies of the recoil electron and of the incident dark matter
particle respectively

The elastic DM-nucleon cross section (Phys. Rev. D 86 (2012) 035022)

dσχN→χN
dQ2

= 4πε2αα′
F 2(Q2)[q2

NA(Ein,Q
2)− 1

4κ
2
NB(Ein,Q

2)]

2mN(m4
A′ + Q2)2(E 2

in −m2
χ)

, (2)

Q2 = 2mN(Ein − Eχ) is the momentum transfer, Eχ is the energy of the outgoing
DM particle. Form factor in the simplest form is F = (1 + Q2/m2

N)−2

Scattering angle is determined by kinematics
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Scattering of DM particles vs. Elastic scattering of neutrino
Work in progress. . .

Toy Monte Carlo simulations of the SHiP setup. Homogeneous target.

Number of events as function of the electron scattering angle and the electron
energy. Scattering of DM particles vs Elastic scattering of neutrino.
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Accurate simulation of scattering

Typically bounds are obtained requiring

Nevents ≡
∫
det

dΩ

∫
dEin nσ(Ein) Ldet

dNχ
dEindΩ

> 100 (10, 1000, ...)

But can we destinguish it from the ν background?

Still a lot of questions.
Geant4 simulation of both neutrinos and χ ?
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Conclusions for LDM

Reference model for tau neutrino detector

Everything is known (parameters, cross section)

Widely studied by many groups (helps to compare SHiP sensitivity to that of
other facilities)

Further steps

Other models of LDM (light vector and scalar mediators) – implement in
FairSHiP

Explore a possibility of background rejection with signals both in emulsion
and in main detector
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Part II: Hadronic decays of scalar mediators

Alexander Monin, Alexey Boyarsky, Oleg Ruchayskiy
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Reminder: Scalar portal

New scalar S couples to the Higgs field H:

L = LSM +
1

2
(∂µS)2 + (α1S + αS2)(H†H) + λ2S

2 + λ3S
3 + λ4S

4,

Scalar S “inherits” interactions from Higgs

LS
int = − sin θ

∑
f

mf

v
Sf̄ f + 2 sin θ

M2
W

v
SW+W− + sin θ

M2
Z

v
SZ 2 + . . .

where tan 2θ = 2α1v
M2

H−m2
S
≈ 2α1v

M2
H
, θ � 1

Hadronic part of the interaction Lagrangian

Lint = sin θ
S

v

∑
q=u,d,s,c,b,t

mq q̄q

For 2mπ < mS < 1− 2GeV we are interested in decays to pions: S → ππ,
S → K̄K
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Decay to two pions in the lowest order perturbation theory

The resulting LO decay width is

ΓLO(S → π+π−) =
m3

S sin2 θ

16πv2

(
2

9
+

11

9

m2
π

m2
S

)2(
1− 4m2

π

m2
S

)1/2

(Voloshin 1986; Voloshin & Zakharov 1980)

This result is used in many works (see e.g. Schmidt-Hoberg et al. [1310.6752]; McKeen

[0809.4787]; OConnell [hep-ph/0611014], . . . ).

This estimate is also used in SHiP Technical proposal and Gaia’s note
(CERN-SHiP-NOTE-2017-001)

It turned out that corrections to the tree level ChPT are large (e.g. Chivukula et

al. 1989; Donoghue et al. 1990)
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Is this worth fighting for?

Difference between “leading order” and “non-perturbative” calculations is a
factor O(50) (Donoghue et al. 1990)
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Given a very large difference between leading-order and non-perturbative results
claimed in the literature and the absence of consensus in the community, we
decided to revise the question of hadronic decays of a light scalar.
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Dispersion relation method

Form-factors are analytic functions apart
from a cut for s ≥ 4m2

π

Reconstruct form-factor by its imaginary
part:

f (s) =

∫ ∞
4m2

π

ds ′
Im f (s ′)
s ′ − s − iε

At s > 4m2
π intermediate pion states go

on-shell ⇒

π
π

n

π
π

Im =Σn

Kπ/
Kπ/

Kπ/
Kπ/

Kπ/

Imaginary part is determined by ππ → ππ scattering

The imaginary part of the form-factor is given by sin2
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Muskhelishvili-Omnès solution (general)

Below KK̄ threshold
(4m2

π ≤ s < 4m2
K ) one can

express imaginary part of all
form-factors solely via δπ(s) —
experimntally measured phase
of ππ → ππ scattering

Any form-factor is given by the
so-called
Muskhelishvili-Omnès
solution:

J.A. Oller, L. Roca / Physics Letters B 651 (2007) 139–146 141

Fig. 1. S-wave I = 0 ππ phase shift, δπ (s). Experimental data are from Refs. [20,24–26].

Fig. 2. Left panel: Strong phase ϕ(s), eigenvalue phase δ(+)(s) and asymptotic phase φas(s). Right panel: Integrand of 〈r2〉πs in Eq. (3.2) for parameterization I
(dashed line) and II (solid line). For more details see the text. Notice that the uncertainty due to φas(s) is much reduced in the integrand.

For those tππ for which δπ (sK) > π then ϕ(s) follows δπ (s)

just after the KK̄ threshold and there is no drop, as emphasized
in Ref. [10], see Fig. 2.

If Eq. (2.2) were used for those tππ with δπ (sK) ! π

then a strong maximum of |Γπ (t)| would be obtained around
the KK̄ threshold, instead of the aforementioned zero or the
minimum of Refs. [4,5], as shown in Fig. 3 by the dashed–
dotted line. That is also shown in Fig. 10 of Ref. [21] or
Fig. 2 of [12]. This is the situation for the Γπ (t) of Refs. [9,
10], and it is the reason why 〈r2〉πs obtained there is much
larger than that of Refs. [1,4,5]. The unique and impor-
tant role played by δπ (sK) (for elastic tππ below the KK̄

threshold) is perfectly recognized in Ref. [10]. However, in
this reference the astonishing conclusion that Γπ (t) has two
radically different behaviours under tiny variations of tππ

was sustained. These variations are enough to pass from
δπ (sK) < π to δπ (sK) ! π [9], while the T - or S-matrix
are fully continuous. Because of this instability of the solu-
tion of Refs. [9,10] under tiny changes of δπ (s), we consider
ours, that produces continuous Γπ (t), to be certainly preferred.
We also stress that our solutions, either for δπ (sK) ! π and
δπ (sK) < π , are the ones that agree with those obtained by
solving the Muskhelishvili–Omnès equations [1,4,5] and uni-
tary χPT [7].

f (s) = f0

(
1− s

s0

)
exp

(
s

π

∫
ds ′δπ(s ′)

s ′(s ′ − s − iε)

)

Constant f0 is known from perturbation theory (s → 0)

If the zero, s0, is also the perturbative range of energies – we are done!
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Current status

Almost factor of 1000 large than the numbers used in TP!

25 / 27



Next steps

Finish this analysis

Add the case S → K̄K

Implement in FairSHiP

Revise scalar production at SHiP
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Why the difference?

Recall: we needed to evaluate three matrix elements (form-factors):

θπ(s) ≡ 〈ππ| θµµ |0〉 ; ∆π(s) ≡ 〈ππ|ms s̄s |0〉 ; Γπ(s) ≡ 〈ππ|mu ūu + md d̄d |0〉

∆π(s) and θπ(s) have their zeros in perturbative region - we can compute
them with confidence

Zero Γπ(s) lies in the non-perturbative region but we can reconstruct it from
pion’s scalar radius 〈r2〉s (Oller & Rocca 2001; Ananthanarayan et al. 2004)

In computing θπ(s) we find significant discrepancy with the results of
(Donoghue et al. 1990) who claim that there is an extra non-perturbative zero of
the form-factor θπ(s)

If taken at face value this would contradict to the general statement about
behaviour of form-factors at s →∞ (Brodsky & Farrar)

27 / 27


