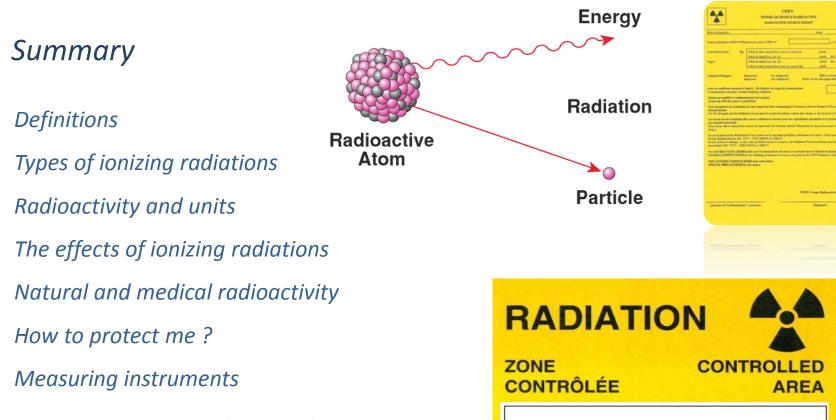


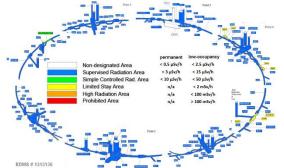
www.cern.ch

RADIOACTIVITY AND IONIZING RADIATIONS

Pierre Carbonez : HSE-RP-DC

08/03/2018

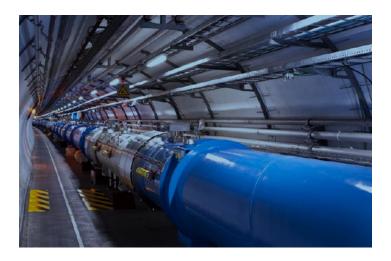



Dosimètre obligatoire

Radiation Protection

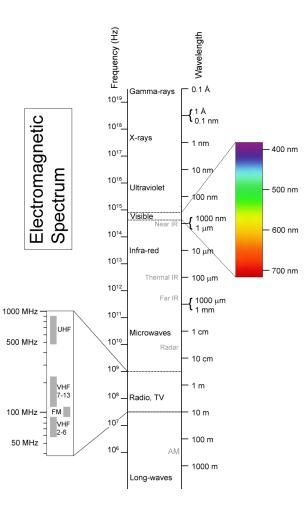
Radioprotection

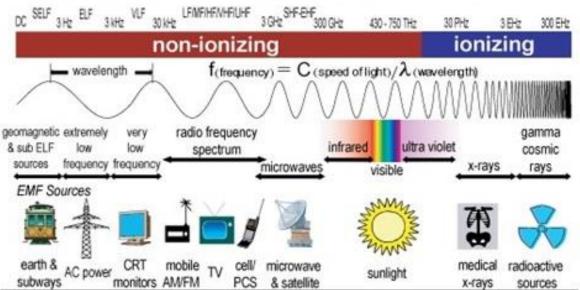
T



What is Radioactivity?

Elements that are RADIOACTIVE are UNSTABLE because they have too many particles or too much energy. In their attempt to become STABLE they give up particles or energy and this is......


RADIOACTIVITY


The goal of Radiation protection is to protect humans against the effects of ionizing radiation while working with it.

Ionizing radiation

THE ELECTROMAGNETIC SPECTRUM

Gigahertz (GHz) 10-9 Terahertz (THz) 10-12 Petabertz (PHz) 10-15 Evahertz (EHz) 10-18 Zettahertz (ZHz) 10-21 Yottahertz (YHz) 10-24

Different types of ionizing radiations:

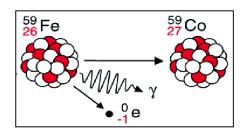
- 1. Particles (neutrons, protons, alpha, beta)
- 2. Electromagnetical waves (gammas rays, X rays, photons)

Origin of radioactivity

Uncorrect balance between protons and neutrons.

 \rightarrow unstable nucleus

Internal reorganisation


of the nucleus (desintegration)

Energy release: ionizing radiations

Activity 1 desintegration/second

=

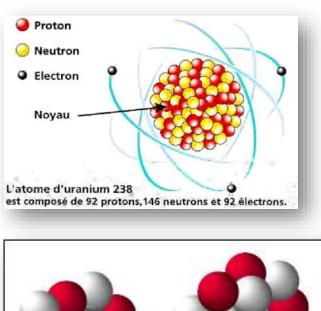
1 Becquerel (Bq)

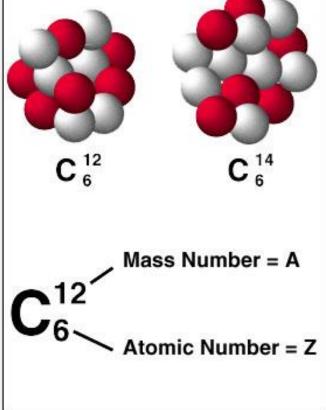
Radiation Ionizing radiation [energy deposit (Gy/h)]

Fundamentals

²³⁸ 92

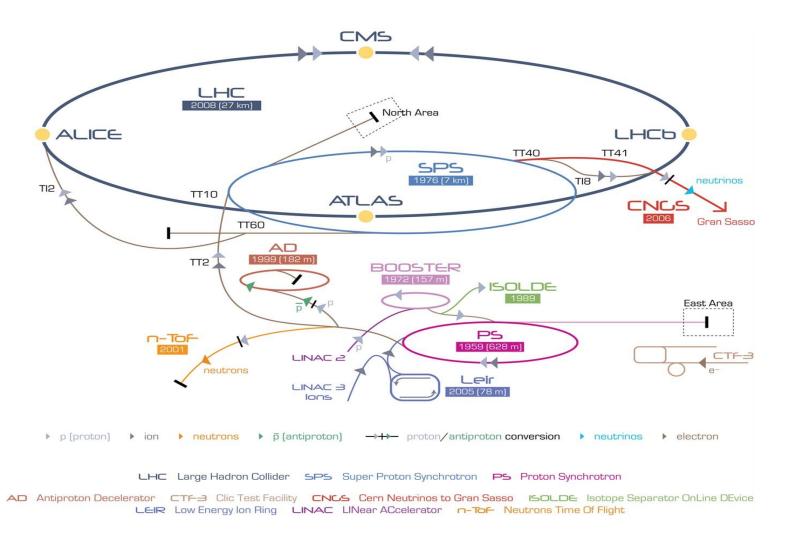
Uranium has :

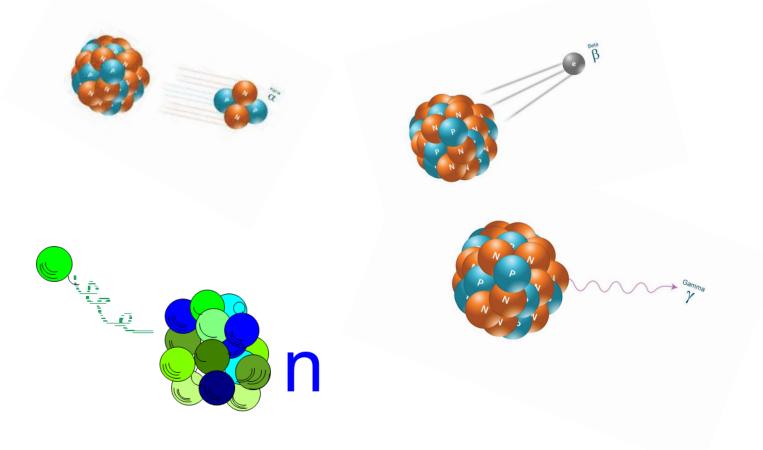

- 92 protons - 146 neutrons


- 92 electrons

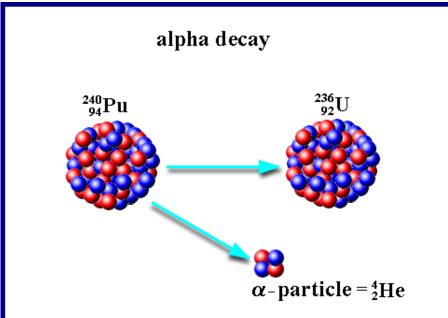
Mass Number

Isotopes : same $Z \neq A$


^A7



Different types of radiation



Alpha particles

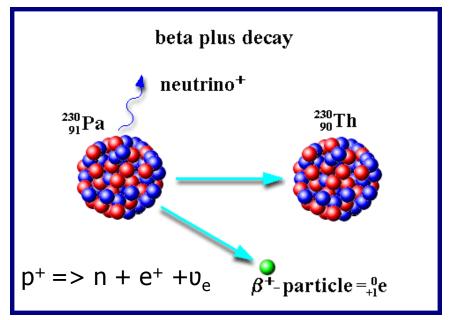
The α particle :

- Helium nucleus (2 protons and 2 neutrons)
- Desintegration product of heavy nuclei
- Charged particle
- \bullet Free path of some μm in matter and some cm in air

• Non penetrating radiation (harmfull if ingested)

•Alphas at CERN : ISOLDE targets, radioactive sources for calibration (²⁴¹Am), sources for experiments (n-TOF)

- Can be stopped by a simple sheet of paper
- Hazardous effects on the body if ingested


Beta particles

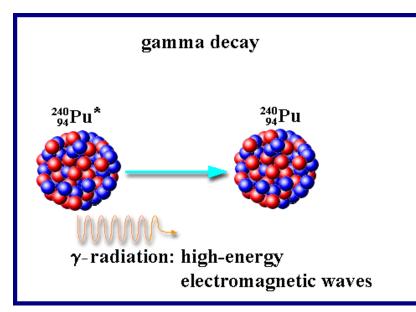
The β^+ or β^- particle :

- Positron (e⁺) or Electron (e⁻)
- Produced by unstable nucleus

Presenting an excess of protons or neutrons

- Free path of cm in matter and m in air
- Non penetrating radiation (skin surface)
- At CERN : material activated in accelerators, sources, air
- •Can be stopped by a light shielding

Gammas and X-rays

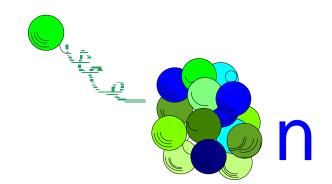

 γ and X rays : electromagnetic raditations

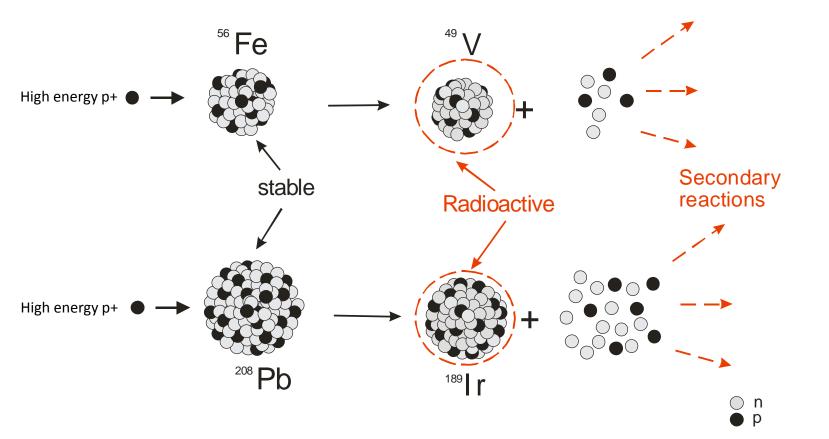
- Produced by excited atoms or nuclei
- Free path of some m in matter and hundreds

of meters in air

- Penetrating radiation (deep doses)
- At CERN : material activated by accelerator particles
- Shielding requires dense material (concrete, lead, iron)

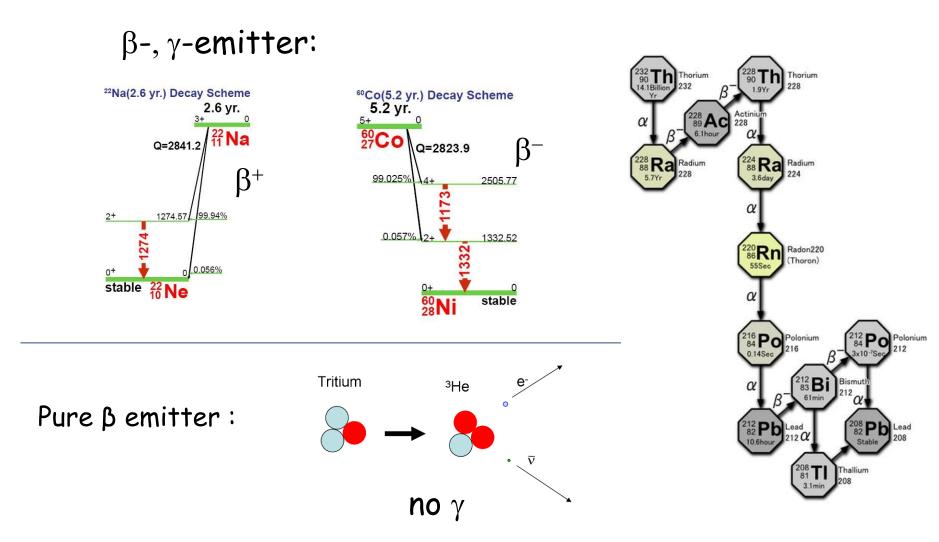
x-rays are emitted by the electrons outside the nucleus, and gamma rays are emitted by the excited nucleus itself


Neutrons

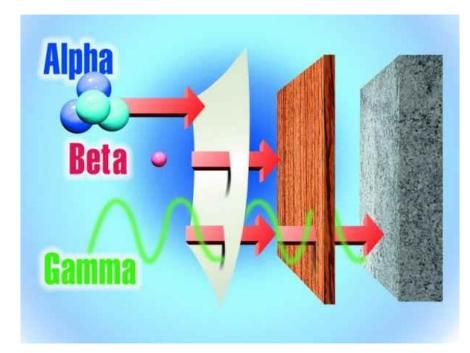

HSE Occupational Health & Safety and Environmental Protection Unit

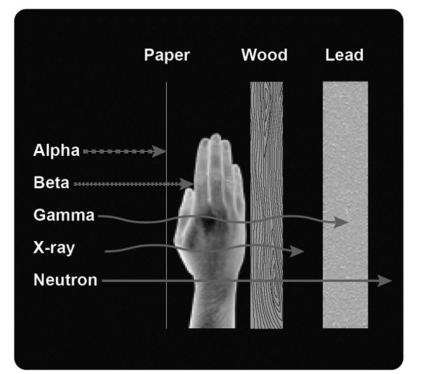
The neutron n :

- Non charged particle
- Coming from spontaneous fission reaction, fission in reactors or spallation around accelerators
- Free path of some m in matter and hundreds of m in air
- Penetrating radiation
- At CERN : beam losses, sources
- •Can activate matter
- Can be stopped by matters rich in H (water, PET...)

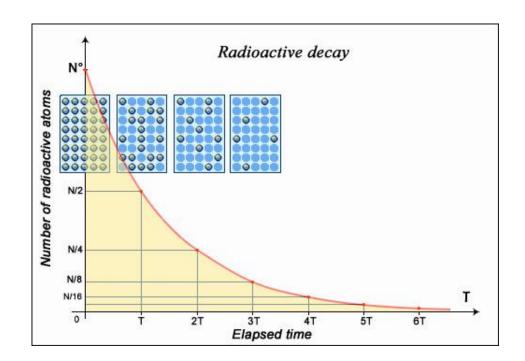


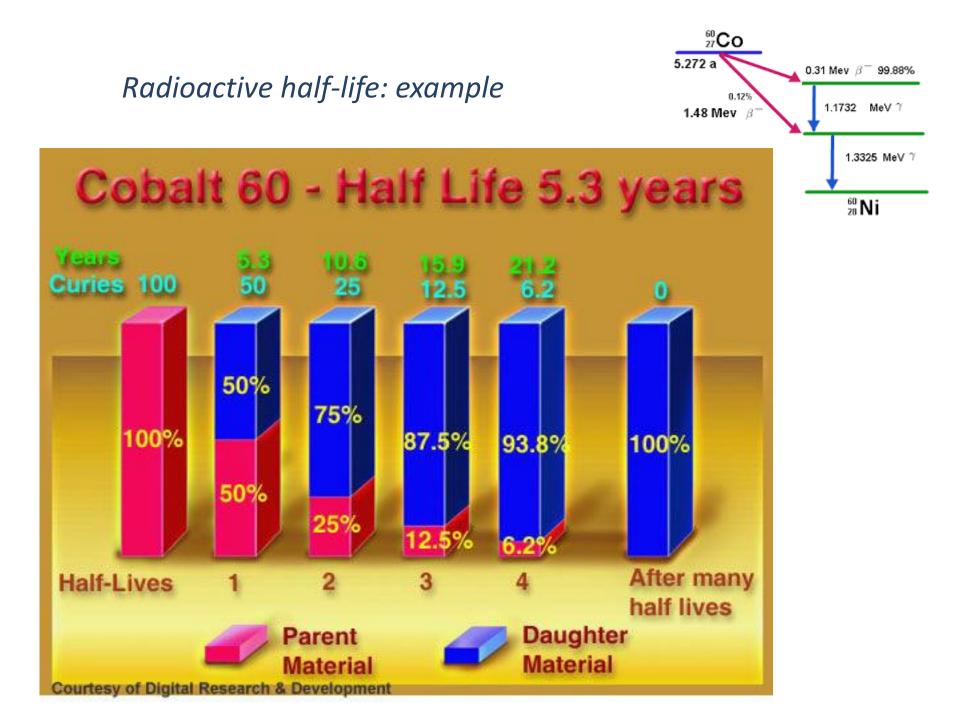
Spallation reactions


Isotopes production from stable atoms

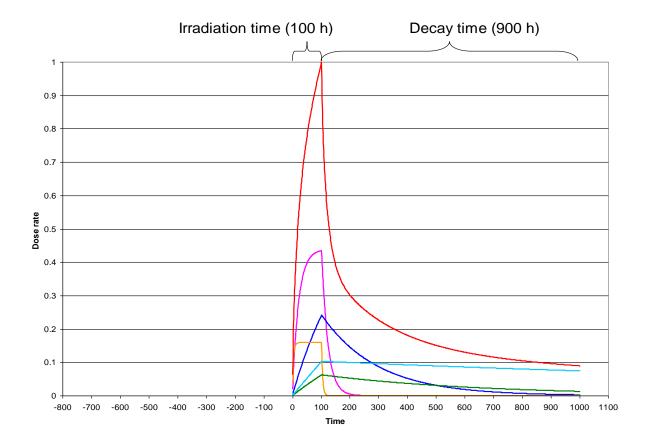

Disintegration schemes

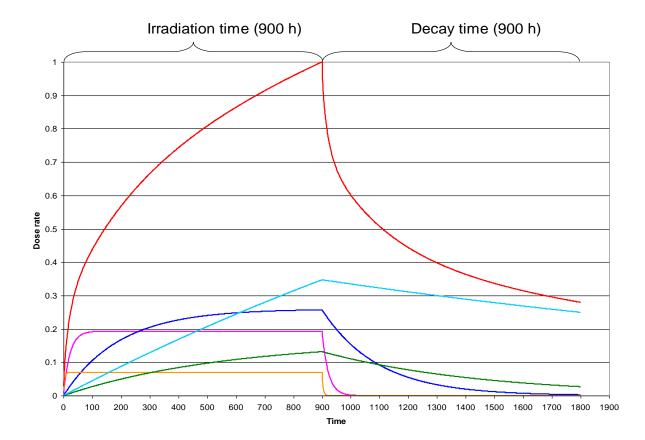
Penetrating power of radiations



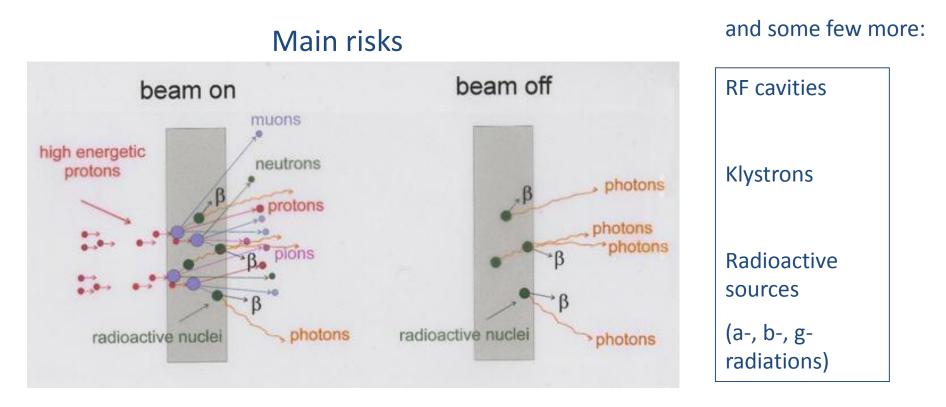


RADIOACTIVE HALF-LIFE: PERIOD


- Half-life is the period of time it takes for the activity of an isotope undergoing decay to decrease by half.
- In other words, after this time the original activity is divided by two
- Examples of half lives
 - Be-7 : T1/2=53.2 days
 - Co-60 : T1/2 = 5.27 years
 - C-11 : T1/2 = 20.38 min
 - U-235 : T1/2 = 7.10E8 years



Activation and decay



Activation and decay

Radioactivity at CERN

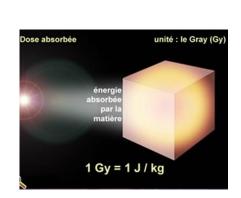
Instantaneous radioactivity

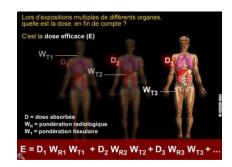
Induced radioactivity

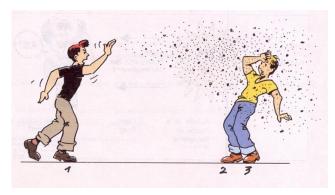
Activation in accelerators

- Beam losses in accelerators
 - particles interacting with vacuum chambers, magnets, walls...
 - All materials are becoming radioactive. The closest to the beam the higher it is activated
 - Losses are randomly distributed The activation is non homogeneously distributed.

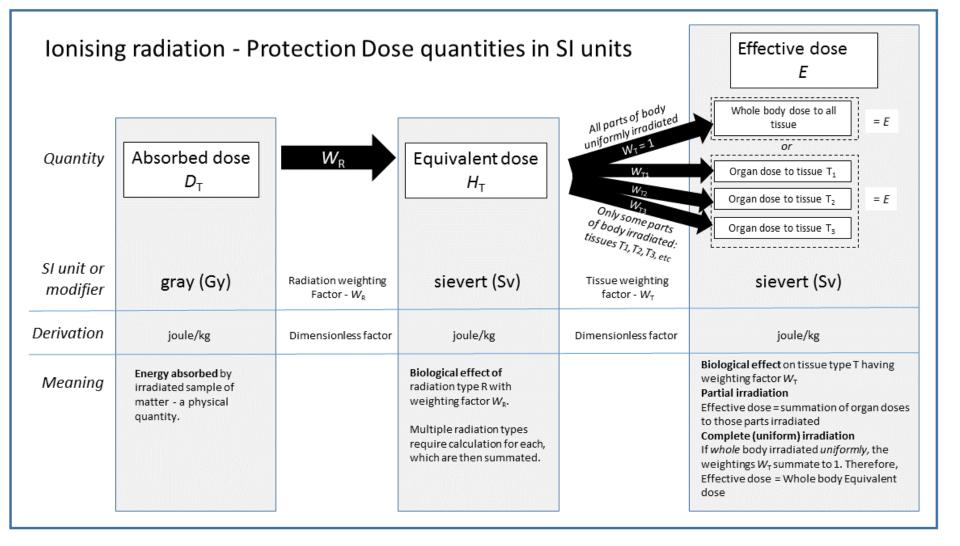
Units

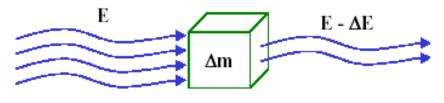

Experts distinguish between four types of radioactive quantities:


ACTIVITY : Bequerel, Bq It is the number of disintegrations occurring per second,


ABSORBED DOSE: Gray, Gy Absorbed energy per mass unit (joule/kg) Amount of energy deposited locally following an irradiation.

DOSE EQUIVALENT: Sievert, Sv Biological effect of ionizing radiation taking care of type of radiation.


EFFECTIVE DOSE: Sievert, Sv Calculus of the sum of equivalent doses on the different tissues and organs



Units : Absorbed dose

Absorbed dose (also known as **total ionizing dose**, TID) is a measure of the energy deposited in a medium by <u>ionizing radiation</u>. It is equal to the energy deposited per unit mass of medium, and so has the unit J/kg, which is given the special name <u>Gray</u> (Gy).

Dose Absorbée (D = $\Delta E/\Delta m$)

L'unité de mesure de la dose absorbée est le gray (Gy). L'ancienne unité de mesure était le rad (1 Gy = 100 rad). Les débits de dose (les doses rapportées à 1 heure) s'exprimeront en Gy/h ou rad/h

The Gray was expressed in rad until 1986.

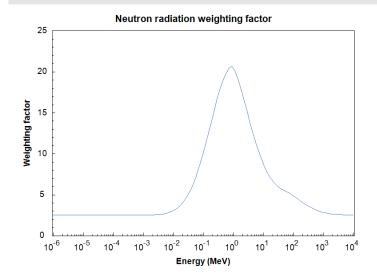
Units : dose equivalent

Dose equivalent (H) is calculated by multiplying the absorbed dose to the organ or tissue (D_T) by a <u>radiation</u> weighting factor, w_R .

This factor is selected for the type and energy of the incident radiation.

$$H_{\rm T} = \sum_{\rm R} w_{\rm R} D_{\rm T,R}$$

Where H_T = equivalent dose to tissue


 D_{T} = absorbed dose D (in Grays) to tissue

Recommended radiation weighting factors from ICRP 103 (2007)		
Radiation type	Radiation weighting factor, w _R	
Photons	1	
Electrons ^a and muons	1	
Protons and charged pions	2	
Alpha particles, fission fragments, heavy ions	20	
Neutrons	A continous function of neutron energy (see Fig. 1 and Eq. 1)	

All values relate to the radiation incident on the body or, for internal radiation sources,

emitted from the incorporated radionuclide(s).

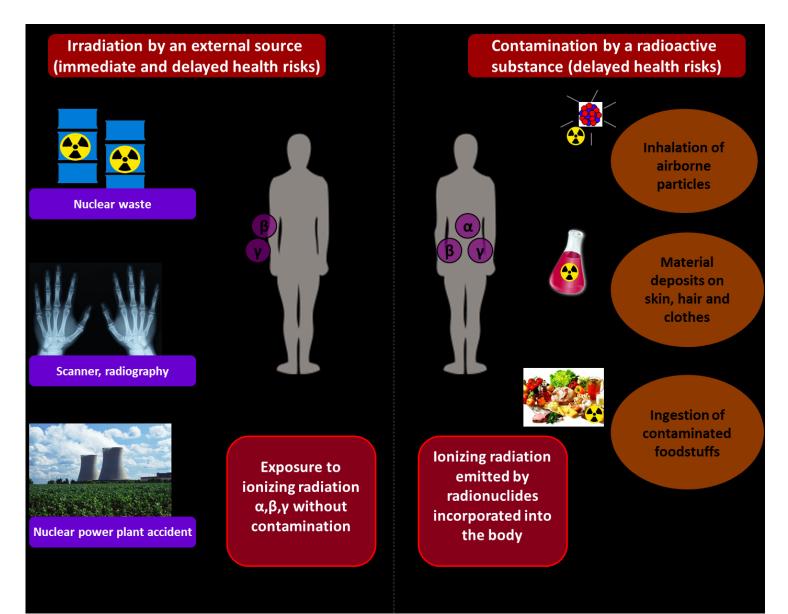
^a Note the special issue of Auger electrons discussed in ICRP 103 (2007).

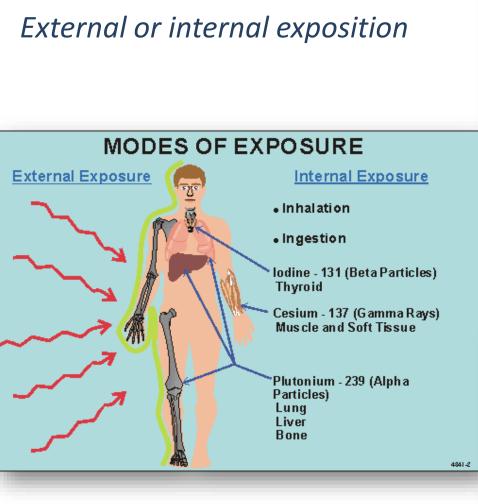
Units : effective dose

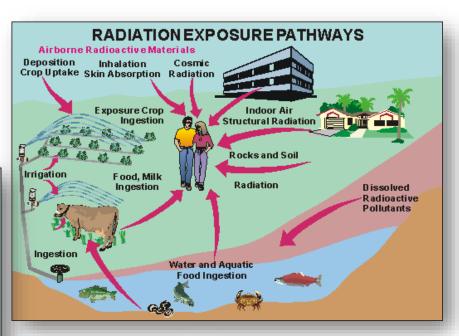
Effective Dose (E) is calculated by multiplying the dose equivalent to the organ or tissue (H_T) by tissue weighting factor: W_T

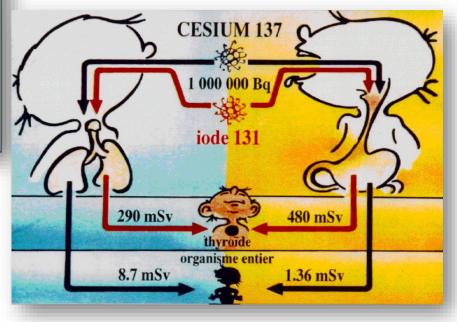
$$E = \sum_{\mathrm{T}} w_{\mathrm{T}} \sum_{\mathrm{R}} w_{\mathrm{R}} D_{\mathrm{T,R}} = \sum_{\mathrm{T}} w_{\mathrm{T}} H_{\mathrm{T}}$$

This factor is selected for the type of tissues or organs being irradiated

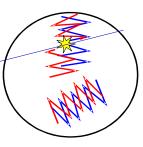

The sum of effective doses to all organs and tissues of the body represents the effective dose for the whole body. If only part of the body is irradiated, then only those regions are used to calculate the effective dose. The tissue weighting factors summate to 1.0, so that if an entire body is radiated with uniformly penetrating external radiation, the effective dose for the entire body is equal to the equivalent dose for the entire body.


Weighting factors for different tissues[13]			
	Tissue weighting factors		
Organs	ICRP26 1977	ICRP60 1990 ^[14]	ICRP103 2007 ^[15]
<u>Gonads</u>	0.25	0.20	0.08
Red <u>Bone</u> <u>Marrow</u>	0.12	0.12	0.13
<u>Colon</u>	-	- 0.12	
Lung	0.12	0.12	0.16
<u>Stomach</u>	-	0.12	0.12
Breasts	0.15	0.05	0.12
<u>Bladder</u>	-	0.05	0.04
<u>Liver</u>	-	0.05	0.04
<u>Oesophagus</u>	-	0.05	0.04
<u>Thyroid</u>	0.03	0.05	0.04
<u>Skin</u>	-	0.01	0.01
Bone surface	0.03	0.01	0.01
Salivary glands	-	-	0.01
Brain	-	-	0.01
Remainder of body	0.30	0.05	0.12
Total	1.00	1.00	1.00

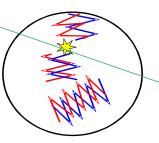

Units - old units – conversion factors


Value	SI Units (official)	Units (old)	Conversion	Definition
Activity	Bequerel [Bq]	Curie [Ci]	1Ci= 37 GBq	Disintegrations per second
Absorbed dose	Gray [Gy]	Rad [rad]	1 Gy = 100 rad	Energy deposition per unit of mass
Dose Equivalent	Sievert [Sv]	Rem [rem]	1 Sv = 100 rem	Quantification of the effects on the human body

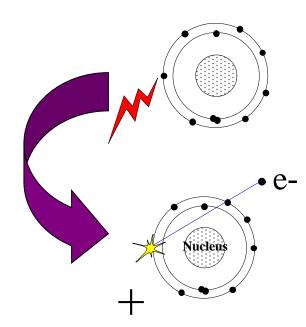
Difference between external exposure and contamination

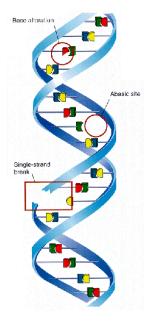


Biological effects of ionizing radiations ?


Ionization : the ionizing radiations are creating free electrons in matter, which are creating free radicals responsible of problems because they are very reactive .

DNA breaks :


Single break event (β^{-}, γ) :


Cell will be repaired, will die or can mutate (rare)

Double break events (n, α) :

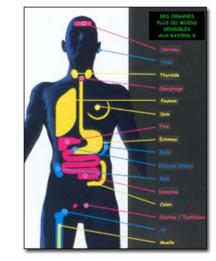
Cell cannot be easily repaired, will die or mutate

Biological effects of ionizing radiations

- Radiation \rightarrow energy absorbed by the body \rightarrow Dose
- Ionization
 - Ionization of atoms and molecules in human cells
 - Ionized atoms and molecules do not behave like ordinary atoms and are disturbing normal processes

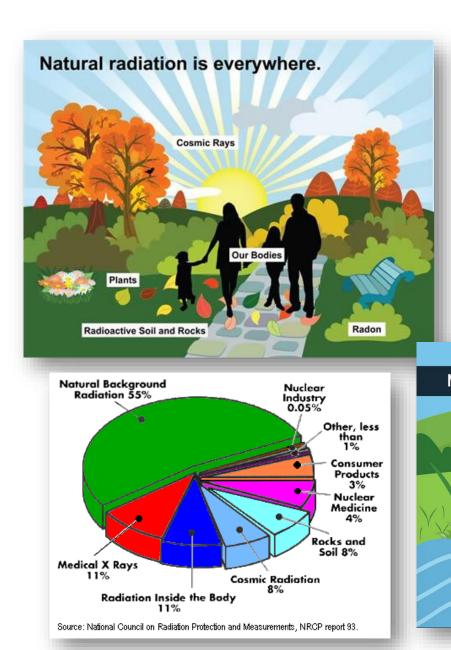
Stochastic effects

No treshold


- Effects arising with a certain probability
 - Genetical effects
 - Cancer inducing

The affect are a function of the total dose absorbed and its distribution in time

Radiological detriment = 5% per Sv :

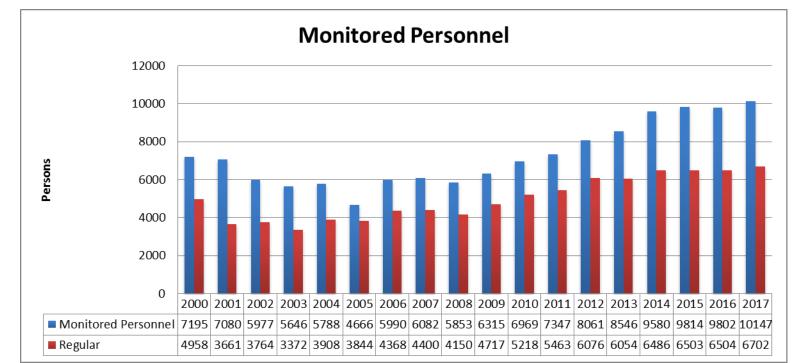

Deterministic effects

- Big dose in small time > 500 mGy
- Immediate effects
 - erythema
 - nausea
 - immunodeficiency
- Directly function of the dose
- LD 50 : 5-7 Sv

		Acute Dose (mGy)	Effect
		0-250	No detectable clinical effects. Delayed may occur, but are highly unlikely
Directectly Ob	servables Effects	250-1000	Slight blood change with later recovery. Possible nausea. Serious delayed effects are possible but improbable.
	- 0.01 mSv	1000-2000	Nausea and fatigue, possible vomiting. Reduction in number of certain blood cells with delayed recovery.
No early effects below the 500 mSv	— 0,1mSv	2000-3000	Nausea and vomiting probable on first day. Two week latent period followed by general malaise, loss of appetite, diarrhea, moderate
threshold	$= \frac{1 \text{mSv}}{2,4 \text{ mSv}}$ $= 10 \text{ mSv}$		loss of weight. Possible death in 2-6 weeks but for most healthy individuals recovery likely.
	-50 mSv	3000-6000	Nausea, vomiting and diarrhea probable in first few hours.
Threshold Dose	+ 100 mSv 500 mSv + 1000 mSv=1Sv		Short latent period followed by loss of appetite, general malaise, then hemorrhage loss of weight, skin blotches, diarrhea,
of the effects	blood formula alteration		inflammation of the throat. Some deaths in first weeks, possible eventual
with the dose	hair loss $\perp 10 \text{Sv}$ atrophies stérilities		death to 50% of individuals receiving about $3500 mCy$.
		6000 or more	Nausea, vomiting and diarrhea in first hours. Short latent period followed by diarrhea, hemorrhage, skin blotches, inflammation of the throat, fever by end of first week.
			Rapid weight loss and death as early as second week with possible eventual death of 100% of exposed individuals.

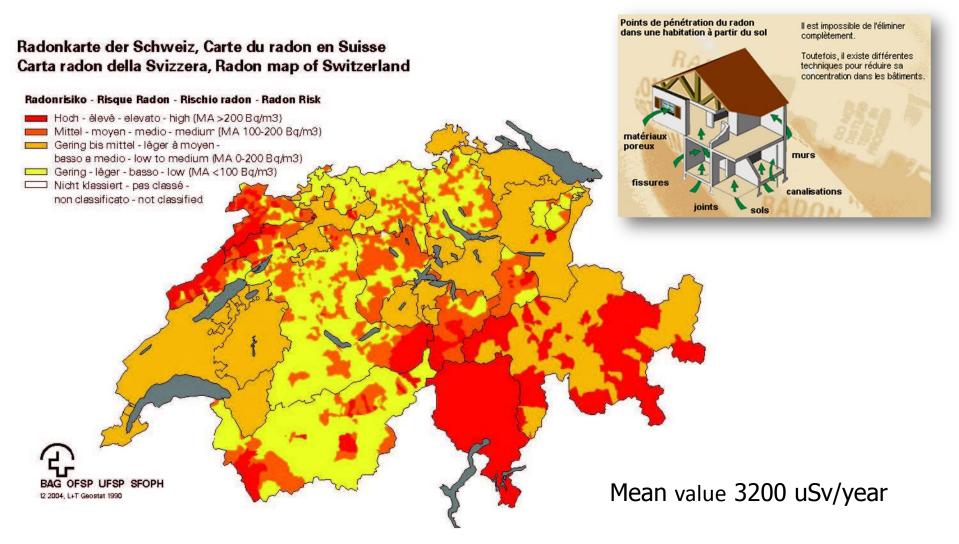
Natural and medical radioactivity

Rain washing radioactive materials out of the air External radiation direct from cloud Internal dose from radioactive materials in the air External dose direct from radioactive materials Internal dose from eating deposited on the ground and drinking radioactive materials in food Internal dose from breathing in sea spray and sand Natural radioactivity in food from animals from crops to from soil humans & crops to animals from fish to •) from water humans & sediments to fish

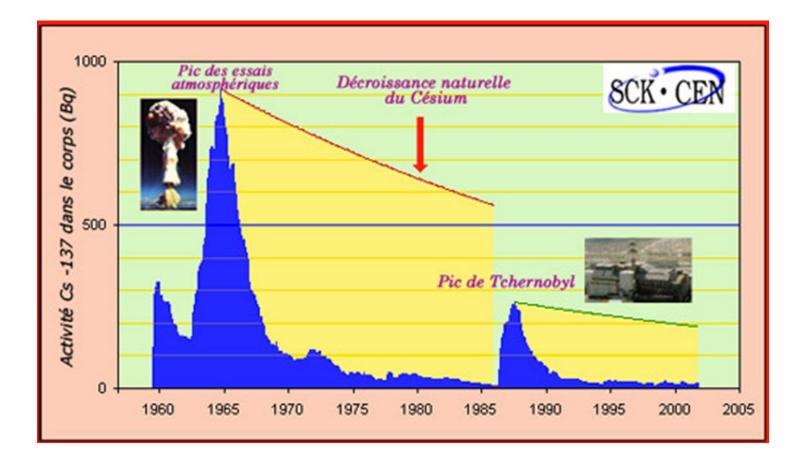

Natural and medical radioactivity

For this procedure:	* An adult's approximate effective radiation dose is:	Comparable to natural background radiation for:		
ABDOMINAL REGION:				
Computed Tomography (CT)-Abdomen and Pelvis	10 mSv	3 years		
CENTRAL NERVOUS SYSTEM:				
Computed Tomography (CT)-Head	2 mSv	8 months		
Computed Tomography (CT)-Spine	6 mSv	2 years		
Computed Tomography (CT)-Chest	7 mSv	2 years		
Computed Tomography (CT)-Lung Cancer Screening	1.5 mSv	6 months		
Radiography-Chest	0.1 mSv	10 days		
DENTAL:				
Intraoral X-ray	0.005 mSv	1 day		
HEART:				
Coronary Computed Tomography Angiography (CTA)	12 mSv	4 years		
NUCLEAR MEDICINE:				
Positron Emission Tomography – Computed Tomography (PET/CT)	25 mSv 8 years			
WOMEN'S IMAGING:	•	•		
Mammography	0.4 mSv	7 weeks		
Note for pediatric patients: Pediatric patients vary in size. Doses given to pediatric patients will vary significantly from those given to adults. * The effective doses are typical values for an average-sized adult. The actual dose can vary substantially, depending on a person's size as well as on differences in imaging practices.				

2,5 to 6 mSv is the mean natural dose per year in CH


Radiation doses at CERN

Dose interval	Persons Concerned	Persons Concerned				Persons Concerned						
(mSv)	concerneu	concerned	concerned	concerneu	concerned	concerned	concerned	concerned	concerned	concerned	concerned	concerned
years	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
0.0	4192	5131	5143	5042	5418	5315	6002	6273	7616	8704	8788	9034
0.1-0.9	1738	898	1020	1219	1514	1984	2030	2188	1816	1108	1003	1110
1.0-1.9	37	33	40	39	31	31	29	82	133	2	11	3
2.0-2.9	17	2	3	13	6	7	0	3	14	0	0	0
3.0-3.9	4	1	1	2	0	0	0	0	1	0	0	0
4.0-4.9	2	1	1	0	0	0	0	0	0	0	0	0
5.0-5.9	0	0	0	0	0	0	0	0	0	0	0	0
> 6.0	0	0	0	0	0	0	0	0	0	0	0	0
SUM PERS	5990	6066	6208	6315	6969	7337	8061	8546	9580	9814	9802	10147



Radon occurrence in Switzerland

Natural background fluctuations

CERN

Evolution of internal contamination by 137-Cs

Regulations

CERN radiation protection guidelines are inspired by the recommendations made by EURATOM in 2013

2013/59/EURATOM European entered into force 06 Feb 2014.

This directive has been adopted in Swiss and French regulations via, ordonnances, décrets, recommandations...

✓ Décret n° 2002-460 du 4 avril 2002,
Protection générale des personnes contre les dangers des rayonnements ionisants,
J. O. de la République française n° 81 du 6 avril 2002 ;
✓ Décret n° 2003-295 du 31 mars 2003,
Interventions en situation d'urgence radiologique et en cas d'exposition durable,
J. O. de la République française n° 78 du 2 avril 2003 ;
✓ Décret n° 2003-296 du 31 mars 2003,
Protection des travailleurs contre les dangers des rayonnements ionisants,
J. O. de la République française n° 78 du 2 avril 2003 ;

(ORaP) réf. 814.501 26 Avril 2017 (état au 1^{er} Janvier 2018); Ordonnance utilisation sources radioactives non scellées 21 novembre 1997 (état au 23 décembre 2011) réf. 814.554

Reference document at CERN => Security code F on Radiation protection EDMS 335729

HSE Occupational Health & Safety and Environmental Protection Unit

Comparison between regulations for annual effective dose limits.

		Wor	kers
Regulations	Public [<mark>m</mark> Sv/an]	B [<mark>m</mark> Sv/an]	A [<mark>m</mark> Sv/an]
EURATOM	< 1	< 6	< 20
FRANCE	< 1	< 6	< 20
CERN	< 0,3*	< 6	< 20
SWITZERLAND	< 1	<	20

* chosen by CERN since the application of code F (in nov. 2006).

Annual dose limits : specific organs

Annual dose limits per work class

Body part exposed	Dose type	Public	Class A for 12 months	Class B for 12 months
Skin	Equivalent	50 mSv	500 mSv	150 mSv
Crystalline lens	Equivalent	15 mSv	20 mSv	15 mSv
Hands,feet	Equivalent	50 mSv	500 mSv	150 mSv

Annual dose limits : crisis and rescue

Professional exposition of persons working in a crisis situation, or a situation involving a radiological urgency, or for people protection (rescue operation)

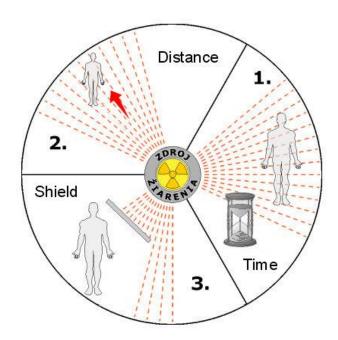
Dose < 50 mSv. Dose up to 250 mSv (in order to protect or save lifes)

CONDITIONS

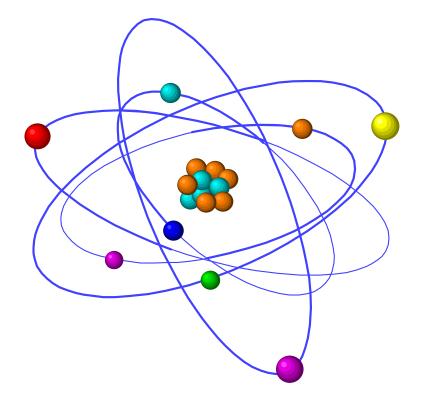
Voluntary workers classified in work category A,
Their names are known in advance,
Appropriate training concerning the possible risks
Workers are wearing appropriate dosimeters

Fundamental principles of RP

✓ Justification

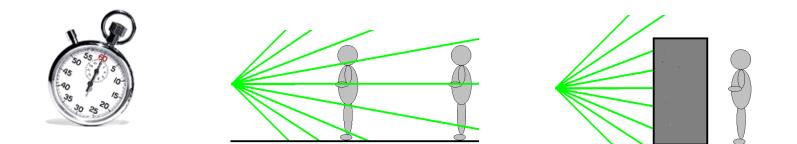

Every exposition to ionizing radiation must be justified

✓ Limitation


All individual doses must stay below legal values

✓ Optimisation

All individual doses must be restricted to a reasonable minimum (ALARA = "As Low As Reasonable Achievable").


Radiocativity and ionising radiations

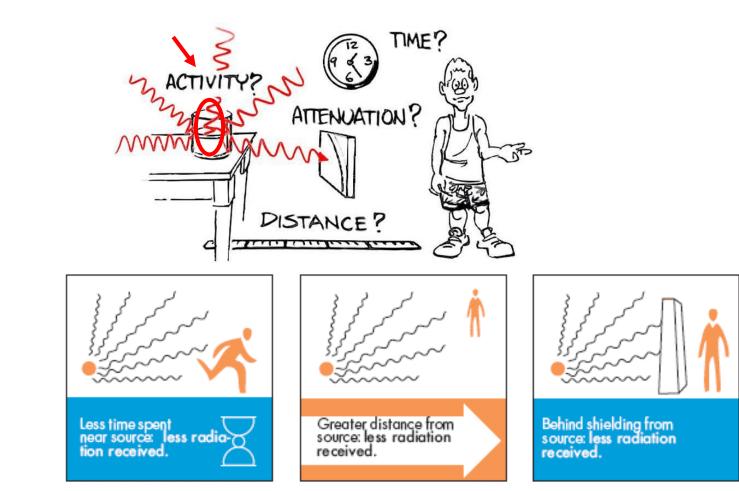
How to protect yourself?

How to protect yourself?

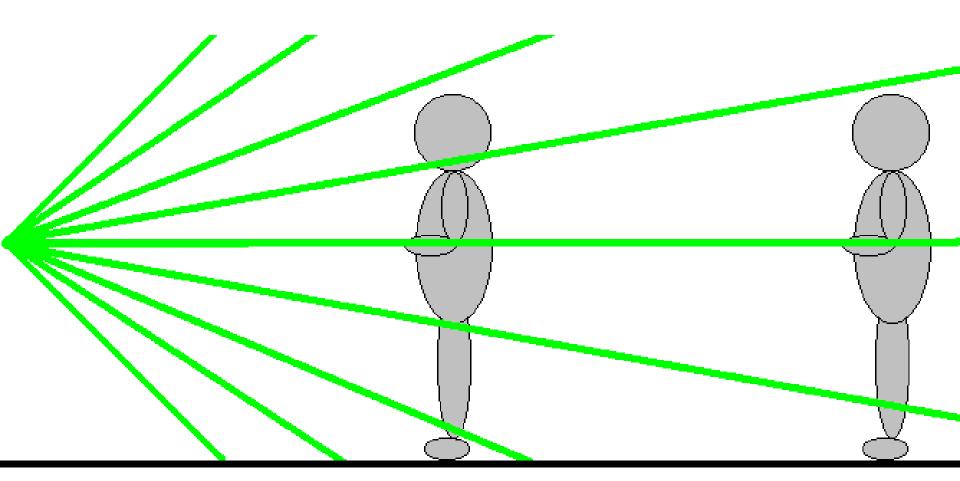
TIME

If you reduce exposition time, you will reduce the dose.

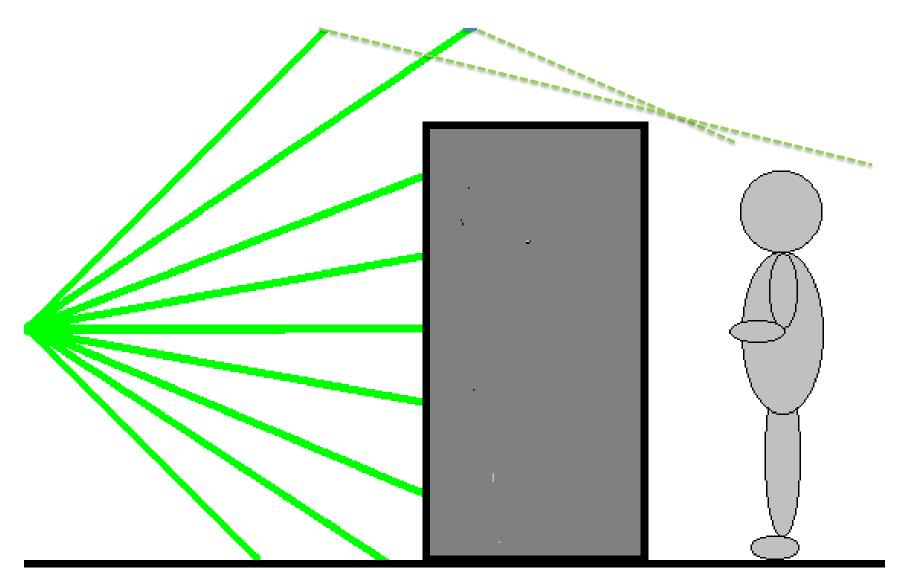
Distance


The further away to the source, the lower the dose.

Shielding


Any material you can hide behind will reduce the dose. A specific material is required for each type of radiation. Concrete is good for all.

Try to avoid unnecessary exposition !

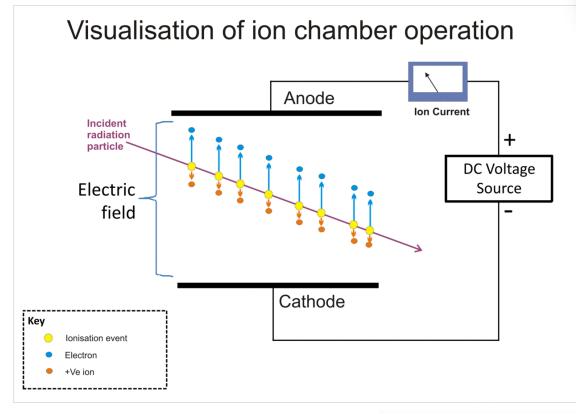

Distance

•Double distance = $1/_4$ dose

•Triple distance = $1/9^{\text{th}}$ dose.

Shielding

How to protect yourself : personal protective equipment

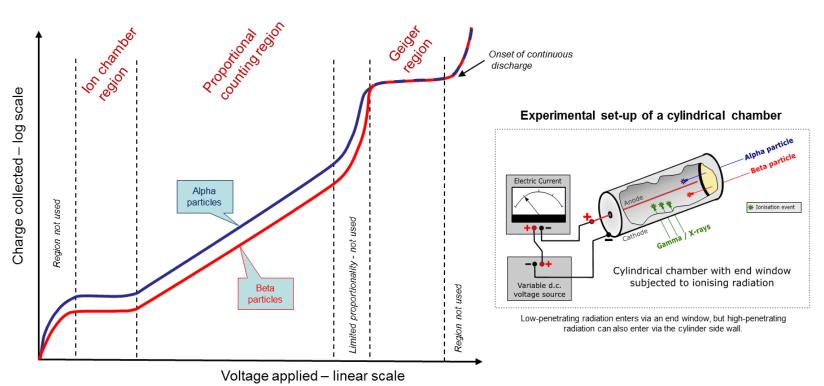


Radiation monitoring techniques and systems

Radiation monitoring techniques and systems

Ionisation chambers

CROME Prototype



Practical Gaseous Ionisation Detection Regions

This diagram shows the relationship of the gaseous detection regions, using an experimental concept of applying a varying voltage to a cylindrical chamber which is subjected to ionising radiation. Alpha and beta particles are plotted to demonstrate the effect of different ionising energies, but the same principle extends to all forms of ionising radiation.

The ion chamber and proportional regions can operate at atmospheric pressure, and their output varies with radiation energy. However, in practice the Geiger region is operated at a reduced pressure (about 1/10th of an atmosphere) to allow operation at much lower voltages; otherwise impractically high voltages would be required. The Geiger region output does not differentiate between radiation energies.

Variation of ion pair charge with applied voltage

Doserate meter 6150 AD6

Detector : Geiger Müller counter

Range:

AD6 : 0,5 μ Sv/h to 10 mSv/h

Energy range : AD6 : de 60 keV to 1,3 MeV

Dimensions : 130x80x29 mm

Mass: 400 grammes. <u>Alimentation</u>: 9V standard battery.

Push Button 1 : on / off

Push button 1

50 AD6

Push button 2

Push button 3

Push button 4

Push Button 2 : mode : doserate doserate alarm maximum doserate intergrated doserate dose alarm battery check Calibration parameters

Push Button 3 : backlight

Push Button 4: speaker on / off

HSE Occupational Health & Safety and Environmental Protection Unit

Doserate meter 6150 AD6 with ADK

Surface contamination meter: used for alpha, beta, gamma rays. Can measure surface contamination or is used to check clothes.

<u>Detector</u>: sealed proportional counter. Active window of 2,75 mg/cm2. Active surface of 100 cm2.

<u>Counting mode</u>: Alpha or Alpha, Beta, Gamma adjusted by the switch. (remove protection plate).

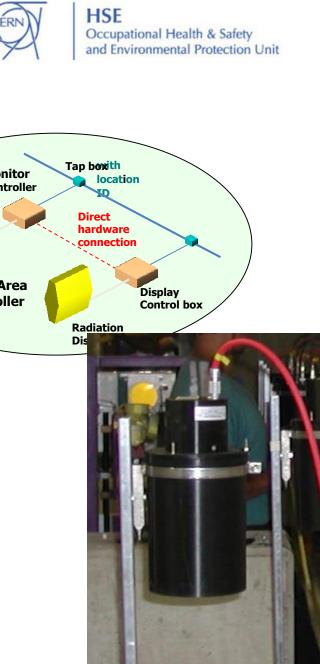
Cont rate: 1 to 999.000 cps.

Detection limits for 60Co : 0,4 Bq/cm2.

<u>Efficiency:</u> 90Sr / 90Y (Beta) : 53,5% 60Co (Beta) : 10,1% 60Co (Gamma) : 1,15% 137Cs (Beta) : 23% 137Cs (Gamma) : 0,22%

Doserate meter 6150 AD6 with Teletektor

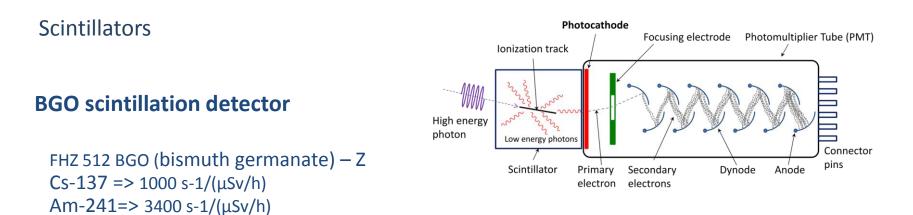
Teletektor 6150 ADT: telescopic probe extendable up to 4,25m


Measures gamma and beta radiation at a certain distance from user

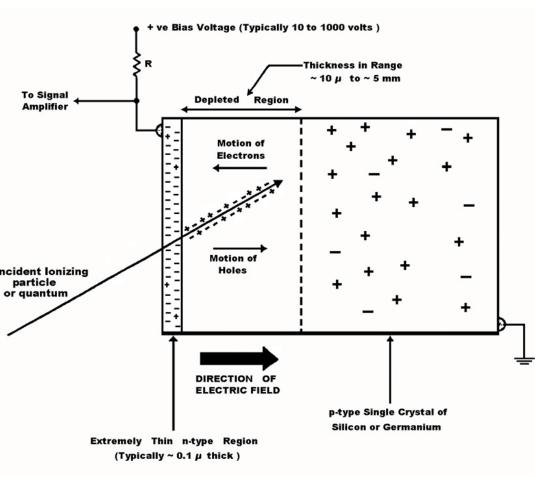
<u>Detectors</u>: 2 Geiger Müller counters : low doses at the end of the probe and high doses behind <u>Doserates range</u>: 0,5 μSv/h to 10 Sv/h

Energy range: 63 keV to 3 MeV

Dimensions : length from 92cm to 4,25m


Online monitoring of induced activity

HSE Occupational Health & Safety and Environmental Protection Unit


Dimension and Weight Ø 40 mm x 310 mm [Ø 1.6" x 12.2"] / approx. 0.5 - 0.7 kg (1.1 - 1.5 lb)

Co-60 =>550 s-1/(µSv/h)

Semi conductors

As a particle passes through the junction, the resultant excitation of electrons causes the formation of holes in the valence band. The electrons are then attracted to the *n* material, while the holes move toward the *p* material. This creates a current pulse which can be measured using a meter or counter.

Radioactive sources at CERN

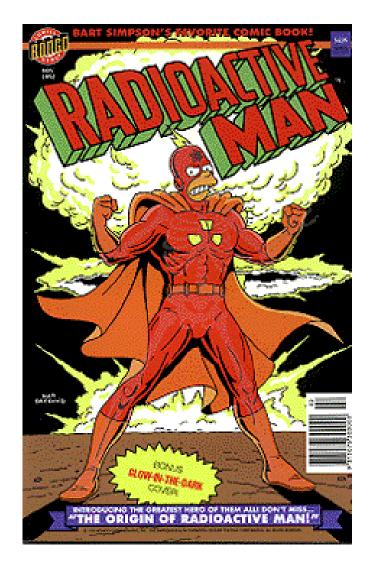
Radiographies at CERN

Entreprise: Qualitech AG	Opérateurs Responsables: ALINE-MARIE PIGUIET (165335) GUNTER REINHARD ZOCHER	
Responsable CERN du contrat	JOHANNES PETRUS METSELAAR	(AT/ECR)
Téléphone	73395	
GSM	163879	

Territo	rial Security Officer	
Nom	FRANCOIS BUTIN	
Div/Gr	TS/LEA	
Téléphor	ne 79079	
GSM	160342	
	Visa RP : conan	
	Date : 01.10.2007	
	Statut:	
	3-Approuvé(e)	

AVIS DE CONTRÔLES RADIOGRAPHIQUES

Dans la zone (ou bâtiment) : 3126 (UX15)


Du 02.10.2007 au 06.10.2007 De 00:01 à 06:00

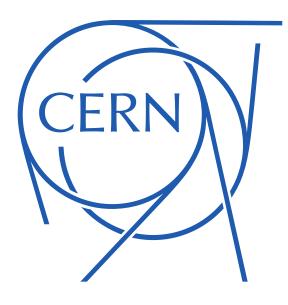
<u>Moyens i</u> Poste à rayon X Source radioactive Type	Non	D Tir : 2040 Précisions sur l'emplacement: on the arches on top of the experiment Plan:
Pour tout rer complémentaire, co heures o SC Radioprote En dehors des h Piquet Radioprot	ontacter, durant les uvrables: iction au 75252 eures ouvrables:	
Webh06.cem.ch/safety-rp-tirs-	-radiographiques/hirAvis .asp?II	-2440 () of20202002007 11:51:17

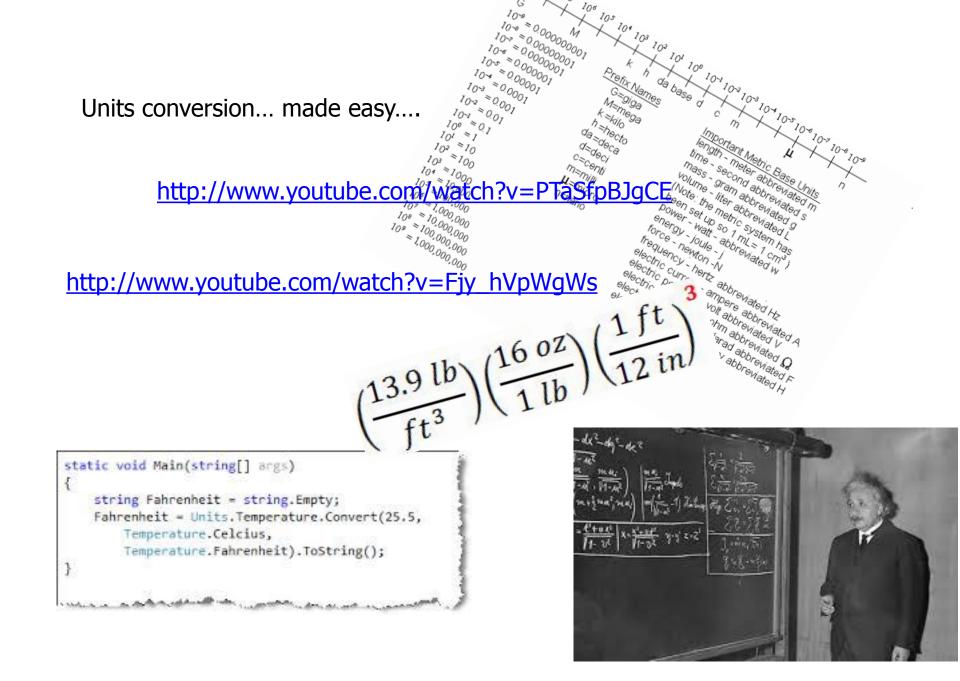
Conclusion

- ✓ Whatever the source, radioactivity is potentially harmful for your health and must be considered carefully.
- ✓ Keep in mind : time, distance, shielding.
- ✓ The goal in every mission is to reduce the doses as much as possible. Follow the ALARA principle.

And now you are....

Don't forget to read your dosimeter


CERN Dosimetry Service



HSE Occupational Health & Safety and Environmental Protection Unit

THANK YOU

