

Daniel Valuch, CERN BE/RF, daniel.valuch@cern.ch

Content

- RF power measurement
- Spectrum analyzers
- Vector network analyzers

- Most popular methods to measure the RF power
 - Diode envelope detection: Most common, large dynamic range, suitable for constant signals
 - Thermal: Very accurate, limited dynamic range, ideal for complex modulated signals
 - Electronic receivers: Most complex, suitable for fast, pulsed signals

• How to read specifications of a power sensor

ROHDE & SCHWARZ NRP8S 3-Path Diode Power Sensor 10 MHz to 8 GHz, 100 pW to 200 mV (-70 dBm to +23 dBm) BMARI SENSOR TECHNOL JGT BE/RE/FB LAB (DANIEL)	
BE/RF/FB LAB (DA NIEL)	

Frequency range:

Diode sensors ~10MHz Thermal sensors DC Pulsed sensors 50-100MHz

Minimum and maximum power for your application. Values change typ. factor 1000+ between room temperature and superconducting state

Introduction to RF measurements and instrumentation Daniel Valuch CERN BE/RF (daniel.Valuch@cern.ch)

External trigger and interface:

Synchronized acquisition, USB interface, ethernet...

How to use a RF power meter

Chose the desired measurement unit

If measuring through couplers/ attenuators etc. set-up the offset for direct reading of the source power value, instead of measured power value

- Some comments:
 - The reading is noisier at the bottom of the dynamic range
 - <u>The power sensor really burns when overloaded</u> (very costly to repair)
 - Sensors have optimized dynamic range for type of measurements they do (very accurate, very fast, RMS...)
 - Sensors and instruments need certain time to measure a data point, be careful with automation
 - Decide what to buy based on how are you going to use the instrument: Table top, USB sensor, Ethernet sensor...

Spectrum analyzer

• Spectrum analyser is a device, which measures frequency content of a signal.

	Spectrum													
	Ref Level -10.0	10 dBm												
	_Count 1/1 DC													
	⊖1Sa AvgLog													
	-20 dBm													
de	-30 dBm													
	-40 d6m													
olitu	-50 dBm													
Am	-60 d6m		_											
	-70 dBm		+											
		Frequency	- 111 - -											
<u>.</u>														
	Start 0.0 Hz	30000 pts Stop 20.0 MH	z											
		Measuring Measuring Measuring												

CERN

CERN

• IF detector bandwidth – resolution bandwidth

- Receiver signal bandwidth prior the power detector
- IF/resolution bandwidth defines the measurement noise floor AND how close two different signals can be in order to still distinguish them

• IF detector bandwidth – resolution bandwidth

- Receiver signal bandwidth prior the power detector
- IF/resolution bandwidth defines the measurement noise floor AND how close two different signals can be in order to still distinguish them

Real time spectrum analyzer

Signal demodulation by s.a.

MultiView 88	Spectrum	X	Real-Tim	ie Spectru	um 🔆 🕅	VSA		Analog) Democ	H (X					
Ref Level -3 Att YIG Bypass	6.00 dBm 0 dB	AQT 100 m:	RBW s DBW	38.34 Hz 400 kHz	Freq 105.6	5 MHz										
1 RF Spectrur	ņ į				●1AP (Clrw	2 FM Ti	me Dor	nain				●1AP 0	Clrw AC	Ref: 0.	00 Hz
-46 dBm -56 dBm -66 dBm -76 dBm -86 dBm -96 dBm -106 dBm -116 dBm					Antikijiji Kada paktijata		80 kHz 60 kHz 40 kHz 20 kHz -20 kHz -20 kHz -40 kHz -60 kHz -80 kHz -80 kHz	.0 s	W dagar daga	l y galgari y da y Y y galgari y da y Y	1001	pts	AN ANA ANA ANA ANA ANA ANA ANA ANA ANA			.0 ms/
CF 105.6 MHz		100	1 pts		Span 40	0.0 kHz	LP 15	50 kHz								
	n	• 1	AP Clrw	⊜2AP Ma	x Ref: 75.0	00 kHz	4 Resu	t Sumn C	arr Pow arr Offs	er et			-44 -115.	.81 dI 69128	3m S1 Hz	
-30 d8 -30 d8 -70 d8 -70 d8 -90 d8 -9	kHz		1 pts		AF Span 63	.33 kHz			FM +Pea -Peak RMS Mod. Fr Mod. De SINA[THD	k < /2 eq. pth D			58. -37 48. 9.8 19 1 -5	989 k .284 k 137 k 179 k 0.0 kH .39 dE	Hz Hz Hz Z	
											M	leasuring	j 💷		L)O	03.11.2016

Modern spectrum analysers

 Vector network analyser is a device, which excites a RF network and measures a response from its ports. All signals are measured as phasors.

If we know RFL and FWD we can calculate:

- VSWR
- S-parameters S₁₁, S₁₂
- Reflection coefficient Γ
- Impedance R+jX
- Admitance Y+jB
- Input matching

If we know TRN and FWD we can calculate:

- Gain, attenuation
- S-parameters S₂₁, S₂₂
- Transmission coefficient T
- Group delay
- Phase shift

- How does the VNA measure?
 - Send signal from port 1 and measure the response at port 1 and port 2

- How does the VNA measure?
 - Send signal from port 1 and measure response at port 1 and port 2

- How does the VNA measure?
 - Send signal from port 1 and measure response at port 1 and port 2

Menu bar

Setting up process...

Daniel Valuch CERN BE/RF (daniel.Valuch@cern.ch)

Few notes on IF bandwidth

- VNA uses a super-heterodyne receivers to measure the RF signals
- Same noise handling procedures as for the spectrum analyser apply

Bandpass filter measurement, fc=1GHz

Introduction to RF measurements and instrumentation Daniel Valuch CERN BE/RF (daniel.Valuch@cern.ch)

• Bandpass filter measurement, fc=1GHz

Bandpass filter measurement, fc=1GHz

Bandpass filter measurement, fc=1GHz

Bandpass filter measurement, fc=1GHz

FRI

Bandpass filter measurement, fc=1GHz

- The instrument always shows some curves...
- ...but in 99% cases this is not what you want to measure

Daniel Valuch CERN BE/RF (daniel.Valu

I HAVE NO IDEA Introduction to RF measurements and in WHAT I'M DOING

• "Hello Daniel, this is Nikolai. We are trying to measure the 1.3GHz superconducting cavity but the instrument shows something strange..."

- We work in the RF domain
- The instrument measures our DUT
- ...but also everything around (cables, connectors, adapters, spurious reflections etc.)
- ...and the instrument is sensitive to temporal alignment of the signals as well
- ...finally the instrument also measures himself

- All networks which connect DUT to the instrument introduce static systematic errors
- We can measure them and mathematically deembed them from the measurement
- This process is called Calibration

- All networks which connect DUT to the instrument introduce static systematic errors
- We can measure them and mathematically deembed them from the measurement
- This process is called Calibration

 Directional coupler measurement without and with full calibration

FRN

Calibration process

• 3 standards: Open, Short, Load + Thru

Thank you for your attention

After the break: hands on part