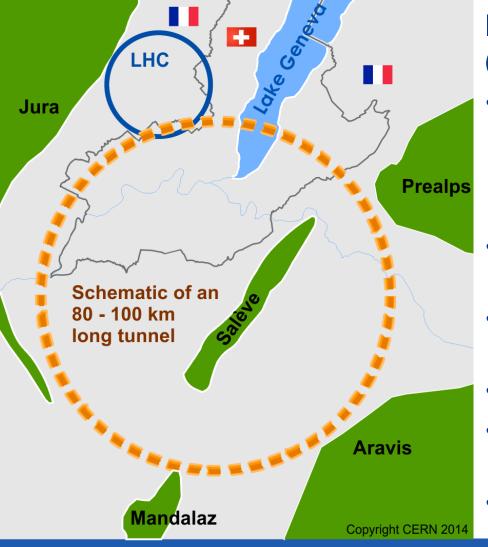
Future Circular Collider Study - Status

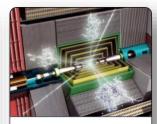
Michael Benedikt

gratefully acknowledging input from FCC coordination group global design study team and all other contributors

FCC


LHC

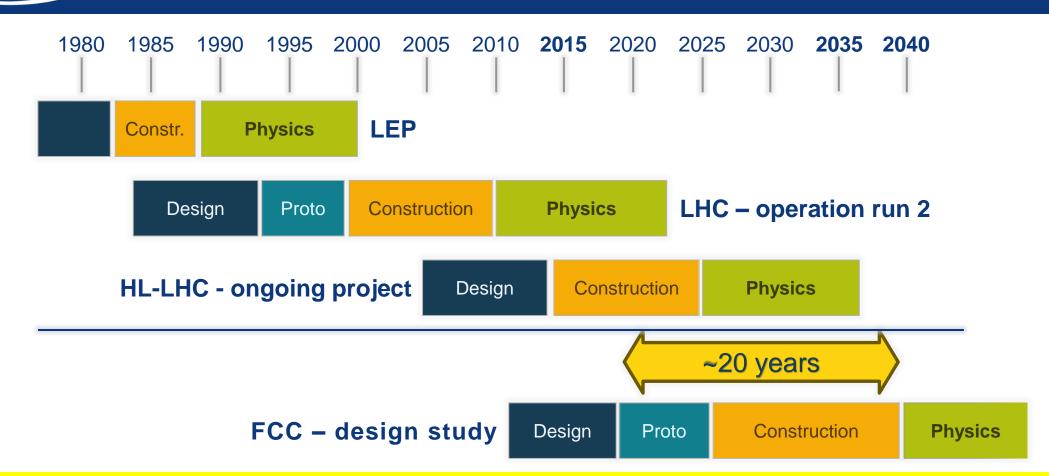
Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305


Scope of FCC Study

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements
 - ~16 T \Rightarrow 100 TeV *pp* in 100 km
- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- HE-LHC with FCC-hh technology
- *p-e (FCC-he) option,* integration of one IP, e from ERL
- CDR for end 2018

Physics Cases



Future Circular Collider Study - Status Michael Benedikt CERN, EASITrain, March 2018

CERN Circular Colliders & FCC

Must advance fast to be ready with new research infrastructure for ~ 2040 Goal of phase 1: CDR by end 2018 for next update of European Strategy

nh ee he

Future Circular Collider Study - Status Michael Benedikt CERN, EASITrain, March 2018

FCC-pp collider parameters

parameter	FCC-hh		HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100		27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.75		26.7	26.7	26.7
beam current [A]	0.5		1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17
long. emit. damping time [h]	0.54		1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0.4)		2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

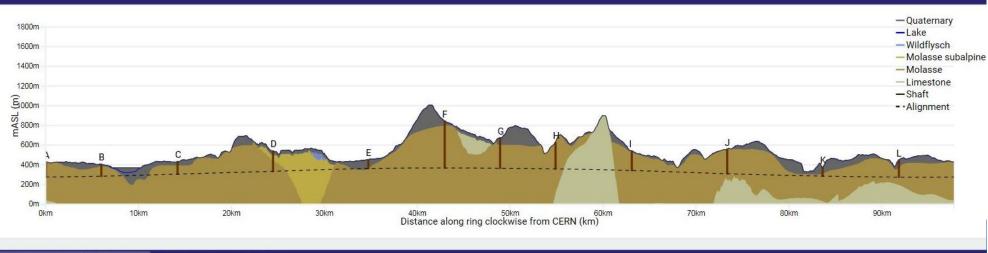
FCC-ee collider parameters

parameter	Ζ	W	H (ZH)	ttbar
cm collision energy [GeV]	91	160	240	350
beam current [mA]	1400	147	29	6.4
no. bunches	71000	7500	740	62
bunch intensity [10 ¹¹]	0.4	0.4	0.8	2.1
bunch spacing [ns]	2.5 / 5.0	40	400	5000
SR energy loss / turn [GeV]	0.036	0.34	1.71	7.72
total RF voltage [GV]	0.25	0.8	3.0	9.5
long. damping time [turns]	1280	235	70	23
horizontal beta* [m]	0.15	1	1	1
vertical beta* [mm]	1	2	2	2
horiz. geometric emittance [nm]	0.27	0.26	0.61	1.33
vert. geom. emittance [pm]	1.0	1.0	1.2	2.66
bunch length with SR & BS [mm]	4.1	2.3	2.2	2.9
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	130	16	5	1.4

Implementation - new footprint baseline

Geology Intersected by Shafts

	nment	Shafts	Query		Alignment Locatio
Cho	ose alignm	ent option			
V4v	ariation_v2	017-2 🗸]		
Tuni	nel elevatio	on at centre:3	322mASL		
\square					The second second second
Grad	d. Params				
		Azimut	h (°): -3	23.5	Constant Report
	Slo	ope Angle x-	x(%): 0	.3	
	Slo	ope Angle y-	v(%): 0	.08	
10.000			and the second second		
				the second s	
LO		SAVE	C	ALCULATE	
	AD nment cent		C	ALCULATE	
Alig			Y: 1107		
Alig	nment cent				
Alig	nment cent	tre		760	
Aligi X:	nment cent 2499941	CP 1	Y: 1107	760 CP 2	
Aligi X: LHC	Angle	CP 1 Depth	Y: 1107 Angle	760 CP 2 Depth	
	Angle	CP 1 Depth 49m	Y: 1107 Angle	760 CP 2 Depth 83m	


h ee he

Geore	gy mei	isected by on		ian Depins			
		Sha	aft Depth (m)		Geology (m)		
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limesto
A	152						
В	121						
С	127						
D	205						
Е	89						
F	476						
G	307						
н	266						
I	198						
J	248						
к	88						
L	172						
Total	2449	66	0	492	1892	0	

Shaft De

Alignment Profile

Optimisation criteria

- tunneling rock type,
- shaft depth accessibility
- surface points, etc.

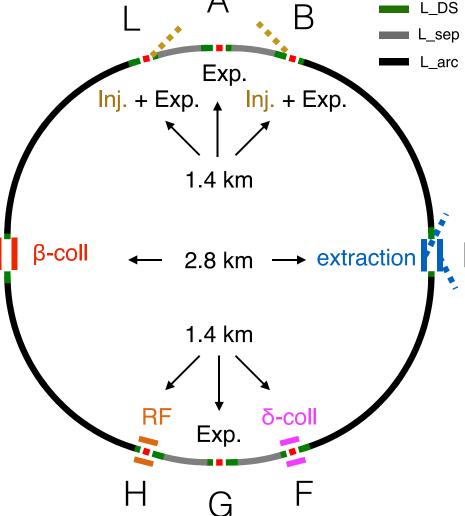
Tunneling

 Molasse 90%, Limestone 5%, Moraines 5%

Present status on implementation

- 90-100 km fits well geological situation in Geneva basin
- LHC suitable as potential injector

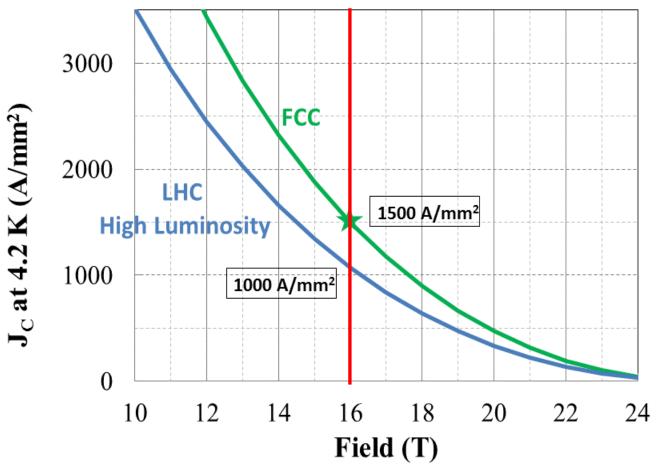
4.7%


Geology Intersected by Tunnel Geology Intersected by Section

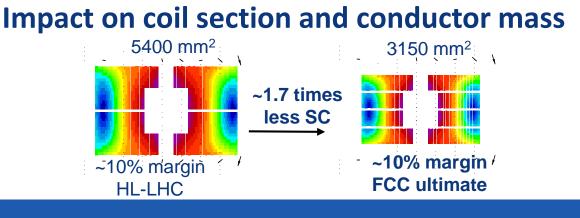
FCC-hh layout and optics

- Two high-luminosity experiments (A & G)
- Two other experiments combined with injection (L & B)
- Two collimation insertions
 - Betatron cleaning (J) J
 - Momentum cleaning (F)
- Extraction insertion (D)
- Clean insertion for RF only (H)
- Compatible with LHC or SPS as injector

Full integrated lattice existing


- Beam dynimcs studies confirm design goals
- Focus on optimization of collimation system and extraction system performances

- Based on EuroCirCol DS
- Contributions from EPFL

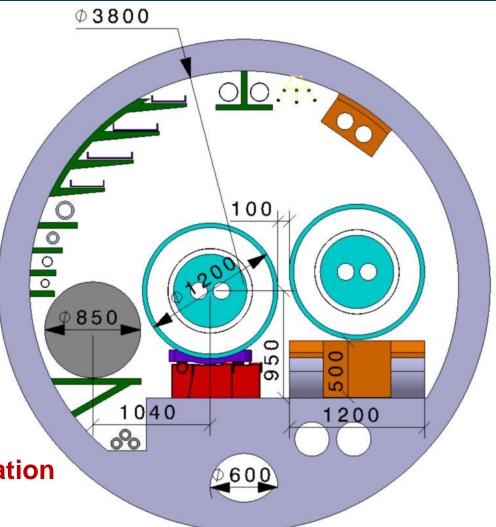


Nb₃Sn is one of the major cost & performance factors for FCC-hh / HE LHC

Main development goals until 2020:

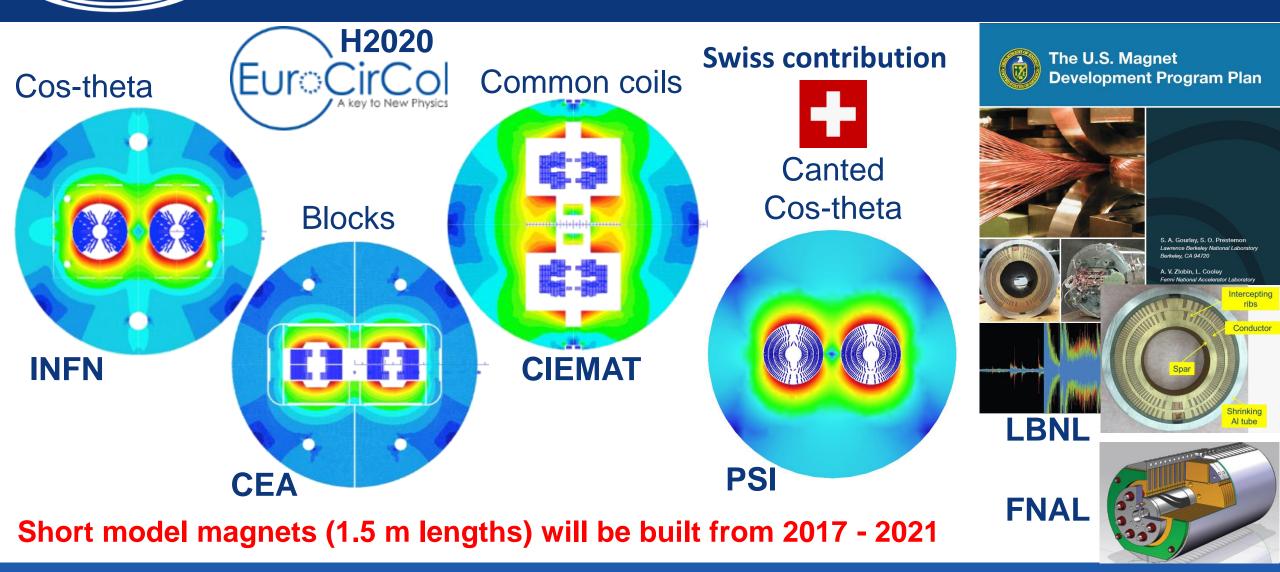
- J_c increase (16T, 4.2K) > 1500 A/mm² i.e.
 50% increase wrt HL-LHC wire
- R&D collaborations with TU Wien and Uni Geneva (amongst others)

h ee he


HE-LHC integration aspects

Requirement: No major CE tunnel modifications

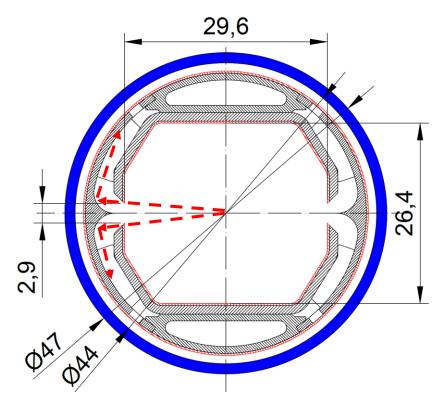
- Maximum magnet cryostat external diameter compatible with LHC tunnel ~1200 mm
- Classical 16 T cryostat design based on LHC approach gives ~1500 mm diameter!


Strategy: develop a single 16 T magnet, compatible with both HE LHC and FCC-hh requirements:

- Allow stray-field and/or cryostat as return-yoke
- Active compensation with (simple) shielding coils
- Optimization of inter-beam distance (compactness)
- → Smaller diam. also relevant for FCC-hh cost optimization

16 T dipole design activities and options

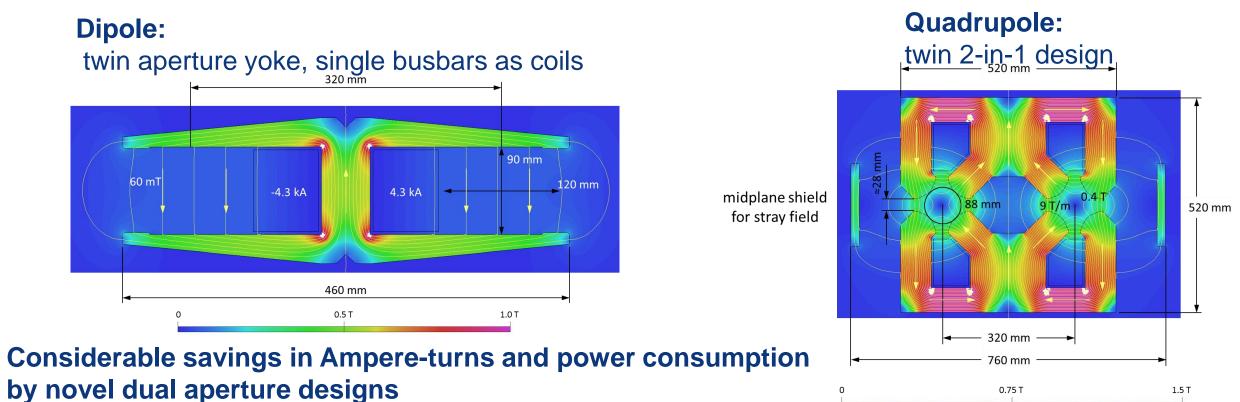
hh ee he


Future Circular Collider Study - Status Michael Benedikt CERN, EASITrain, March 2018

FCC-hh beam screen test @ ANKA

One of the most critical elements for FCC-hh

- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW total power)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

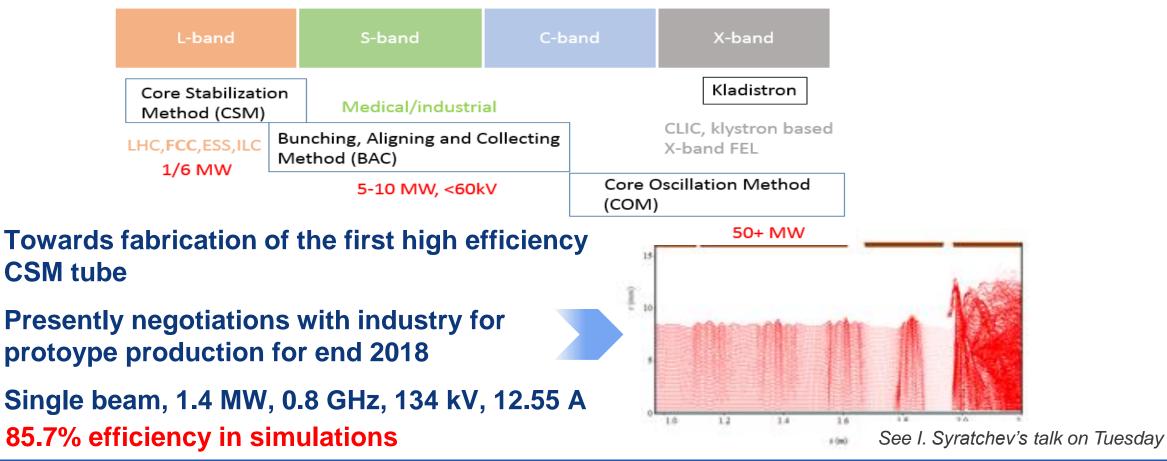


FCC-hh beam-screen test set-up at ANKA: Complete system installed in the ANKA ring; Beam tests since June 2017

FCC-ee dual aperture main magnets h ee he

Prototyping launched of main dipole and quadrupole magnets (~1 m units)

Power consumption twin quad: 22 MW at 175 GeV with Cu coil (half of single-aperture quads) and power consumption twin dipole: = 17 MW at 175 GeV with AI bus bar


1.5 T

0.75 T

Efficient klystron technology

 Development of new klystron bunching technologies to increase RF power production efficiency to almost 90%, was initiated at CERN in 2013 (HEIKA), essential for FCC-ee

۲

EASITrain Marie Curie Training Network

European Advanced Superconductivity Innovation and Training Network
 > selected for funding by EC in May 2017, start 1 October 2017

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS)
- Superconducting thin films for RF and beam screen (Nb₃Sn, TI)
- Turbocompressor for Nelium refrigeration
- Magnet cooling architectures

FCC Collaboration & Industry Relations

Summary and outlook

- Confirmed parameter sets for FCC-hh, FCC-ee, HE-LHC and FCC-he as solid basis for the Design Report end 2018
- Work ongoing on optimisation of machine designs as well as on technology R&D topics
- International FCC collaboration is growing steadily, addressing all the challenging subjects and research lines
- Strong contributions from Austrian and Swiss Institutes and Universities to the FCC Study

