Collectivity observables with high Q² probes

Michelangelo Mangano

CFRN

<u>Benjamin Nachman</u>

LBNL/Berkeley

Collective effects in small collisions systems

Thursday, June 15, 2017

Background

Collective effects have been observed in *pp* that resemble the behavior of HI collisions.

Natural question: what about other effects observed in HI that have not yet been probed in *pp*?

One of the most striking aspects of HI physics at high Q² is the modification of jet energy and structure

Can we study this to see if a QGP is formed in 'central' *pp* collisions?

One handle: Z+jets

In Z + 1 jet production, the transverse momentum of the jet and Z should balance.

We have endless Z's at the LHC

Proposal: study jet(s) as a function of event multiplicity

Experimentally, we can measure this extremely well (<1%)

not to scale N.B. could also be γ

Simulation studies

Pythia 8 with and without rope hadronization see talk by Leif and http://home.thep.lu.se/DIPSY/

Count the number of charged particle tracks not in jets.

Cluster jets with anti- k_t with R = 0.4

Veto events with more than one jet above 25 GeV.

Strangeness in(out)side jets

Average multiplicity, normalized to the average

Strangeness in(out)side jets

Expected raise; note this is also true inside jets!

Strangeness in(out)side jets

Momentum balance

Investigating the slope

Partially due to soft jets, angular 'resolution'; does not seem to be affected by q/g composition.

Conclusions and outlook

We propose to use jets as high Q² probes of collective behavior in *pp* collisions.

In addition to studying the strangeness inside jets, the idea is to search for quenching.

Key challenge is modeling the 'natural' multiplicity dependence of the Z+jet balance.

maybe can fit templates with and without quenching; can also try to lower the jet p_T for the veto.

Quenching effects are not observed in rope hadronization model, but that does not mean they don't exist!

Backup

Full fragmentation function

