

A CLIC-inspired detector for FCC-ee

FCC-ee Detector Design Meeting - 19.6.2017 <u>Emilia Leogrande</u>, on behalf of the CERN Linear Collider Detector group (EP-LCD)

Outlook of this talk

☆ CLIC DETECTOR LAYOUT AND PERFORMANCE

- Detector requirements
 - ☆ from physics
 - * from experimental conditions
- Detector layout
- ☆ Simulation and reconstruction software tools
- Detector performances

THE CLIC-INSPIRED DETECTOR FOR FCC-ee

- * Experimental conditions and interaction region
- Detector layout
 - ☆ Vertex
 - ☆ Tracker
 - 🕸 ECal
 - ☆ HCal
 - \Rightarrow Yoke and muon ID
- ☆ Next steps
- ☆ The CDR Chapter

- momentum resolution
 - A Higgs recoil mass, Higgs coupling to muons, BSM (smuon and neutralino masses)
 - ☆ for high p⊤ tracks

A CLIC-inspired detector for FCC-ee - FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

ACKGROUND Small bunch size => strong beamstrahlung		bunch size
Small bunch size =>	σx	45 nm
strong beamstranlung	σγ	1 nm
	σz	44 µm

HITS OCCUPANCY: IMPACT ON THE DETECTOR

- ☆ Segmentation
 - * vertex pixels: 25x25 μm²
 - * short strips/pixels in some tracker regions
 - ☆ high-granularity calorimeter

Precise hit timing

- ☆ 10ns hit time stamping in vertex+tracker
- \Rightarrow 1ns accuracy for calorimeter hits

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

HITS OCCUPANCY: IMPACT ON THE DETECTOR

- ☆ Segmentation
 - \Rightarrow vertex pixels: 25x25 μ m²
 - * short strips/pixels in some tracker regions
 - ☆ high-granularity calorimeter

Precise hit timing

- ☆ 10ns hit time stamping in vertex+tracker
- \Rightarrow 1ns accuracy for calorimeter hits

THE PRO OF LOW DUTY CYCLE*

- Cooling realized by air flow (vertex)/water
 + POWER PULSING
 - allows to reduce material budget in the vertex+tracker
 - ☆ allows to have compact calorimeters

*will not be the case for FCC-ee!

A CLIC-inspired detector for FCC-ee - FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

11.4m

A CLIC-inspired detector for FCC-ee - FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

A CLIC-inspired detector for FCC-ee - FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

- DD4Hep is the single source of geometry information for simulation, reconstruction and analysis
 DetElements [C++ drivers which interpret XML files with detector parameters]
 - ☆ =>for simulation
 - DDRec DataStructures [reconstruction interfaces filled by C++ drivers]
 - * DD4Hep Surfaces [position of hits, local-to-global coordinate transformation, average material]
 - \Rightarrow => for reconstruction

- DD4Hep is the single source of geometry information for simulation, reconstruction and analysis
 DetElements [C++ drivers which interpret XML files with detector parameters]
 - ☆ =>for simulation
 - DDRec DataStructures [reconstruction interfaces filled by C++ drivers]
 - * DD4Hep Surfaces [position of hits, local-to-global coordinate transformation, average material]
 - \Rightarrow => for reconstruction

Geometry interface to the track reconstruction

- DD4Hep is the single source of geometry information for simulation, reconstruction and analysis
 DetElements [C++ drivers which interpret XML files with detector parameters]
 - ☆ =>for simulation
 - DDRec DataStructures [reconstruction interfaces filled by C++ drivers]
 - * DD4Hep Surfaces [position of hits, local-to-global coordinate transformation, average material]
 - ☆ => for reconstruction

- DD4Hep is the single source of geometry information for simulation, reconstruction and analysis
 DetElements [C++ drivers which interpret XML files with detector parameters]
 - ☆ =>for simulation
 - DDRec DataStructures [reconstruction interfaces filled by C++ drivers]
 - * DD4Hep Surfaces [position of hits, local-to-global coordinate transformation, average material]
 - ☆ => for reconstruction

Detector performance examples

Momentum resolution

$$\sigma_{p_T} / p_T^2 \simeq 2 \times 10^{-5} GeV^{-1}$$

reached for high energy muons in the central region

Detector performance examples

Momentum resolution

$$\sigma_{p_T}/p_T^2 \simeq 2 \times 10^{-5} GeV^{-1}$$

reached for high energy muons in the central region

Photon energy resolution

$$\sigma_E/E \simeq 1.5\%$$

reached for 100 GeV photons with the current detector model (CLICdet_40)

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

Experimental conditions and layout for the FCC-ee CLIC-like detector

- Requirements from physics
 See talk by M. Dams @FCCWeek
- Requirements from experimental conditions
 —> following slides

Experimental conditions

energy/beam [GeV]	45	120	175
bunches/beam	70760	770	78

Bunch spacing [ns] 3.0 400 4000

- Large number of bunches —> crossing angle 30mrad to avoid parasitic collisions
- Last focusing quadrupole close to IP (L*=2.2m)
- Compensating solenoid to prevent emittance blow-up due to non-zero crossing angle

Experimental conditions - Interaction region

Experimental conditions - Interaction region

Scale all the barrel layers*							
double layer radius [mm]	CLIC	FCC					
1st	31-33	17-19					
2nd	44-46	37-39					
3rd	58-60	57-59					
*layer thickness may need to be							
increased to	accommo	date water					
cooling							

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande 12/18

Support tube*							
radius [mm]	CLIC	FCC					
inner	575	675					
outer	600	700					
*to be checked for mechanical stability							

Support tube*							
radius [mm]	CLIC	FCC					
inner	575	675					
outer	600	700					
*to be checked for mechanical stability							

Support tube*							
radius [mm]	CLIC	FCC					
inner	575	675					
outer	600	700					
*to be checked for mechanical stability							

Scale all the barrel layers* OUTER BARREL RADIUS to be increased to 2.14 m $\hat{\mathbf{x}}$ \Rightarrow to compensate for the lower B layer radius CLIC FCC [mm] ITB1 127 127 1 m ITB2 340 400 ITB3 670 554 OTB1 1000 819 OTB2 1153 1550 Support tube OTB3 1486 2100 *layer thickness may need to be increased to accommodate more water cooling Support tube* radius [mm] FCC CLIC inner 575 675 600 700 outer *to be checked for mechanical

stability

Scale all the disks sizes						
disk <mark>inner</mark> radius [mm]	CLIC	FCC				
ITD1	72	78				
ITD2	99	121				
ITD3	131	163				
ITD4	164	206				
ITD5	197	249				
ITD6	231	291				
ITD7	250	328				
OTD1-4	618	718				
disk <mark>outer</mark> radius [mm]	CLIC	FCC				
ITD1	404	460				
ITD2	551	652				
ITD3	554	652				
ITD4	542	652				
ITD5	544	652				
ITD6	548	652				
ITD7	552	652				
OTD1-4	1430	2080				

Scale all the disks sizes						
disk <mark>inner</mark> radius [mm]	CLIC	FCC				
ITD1	72	78				
ITD2	99	121				
ITD3	131	163				
ITD4	164	206				
ITD5	197	249				
ITD6	231	291				
ITD7	250	328				
OTD1-4	618	718				
disk <mark>outer</mark> radius [mm]	CLIC	FCC				
ITD1	404	460				
ITD2	551	652				
ITD3	554	652				
ITD4	542	652				
ITD5	544	652				
ITD6	548	652				
ITD7	552	652				
OTD1-4	1430	2080				

- ECal BARREL INNER RADIUS changed to 2.15m
 due to larger tracker
 - ECal ENDCAP
 - \Rightarrow z position unchanged
 - ☆ transverse size adjusted
 - ☆ inner radius = 250mm -> available space?
 - ☆ outer radius = 2.35 m

- ECal BARREL INNER RADIUS changed to 2.15m * due to larger tracker
- ECal ENDCAP
 - ☆ z position unchanged
 - ☆ transverse size adjusted
 - \Rightarrow inner radius = 250mm -> available space?
 - ☆ outer radius = 2.35 m

- STRUCTURE unchanged:
 - ☆ SiW sampling calorimeter
 - ☆ Cell size: 5x5 mm²
 - ☆ Number of radiation lengths: 22 X0
 - ☆ Number of layers: 40
- DISTANCE BETWEEN LAYERS: might have to be revised due to need for cooling => sampling fraction will be worse

- ☆ STRUCTURE unchanged:
 - * steel + scintillator sampling calorimeter

STRUCTURE unchanged:

* steel + scintillator sampling calorimeter

STRUCTURE unchanged:

* steel + scintillator sampling calorimeter

- Segmentation adjusted:
 - ☆ Number of layers: 44
 - $\,\, \mbox{ } \times \,$ Number of interaction lengths: 5.5 λ_0
 - \approx CLIC: 7.5 λ_0
 - $\,\, \approx \,$ ILD: 5.5 λ_0 (optimized for 500GeV
 - => similar energy scale as FCC)

- ☆ due to larger tracker
- HCal ENDCAP
 - ☆ size adjusted
 - ☆ outer radius = 3.57 m
 - ☆ outer z = 3.71 m (CLIC: 4.13 m)

Yoke shields stray field, especially along the beam
 + improves muon ID

- ☆ STRUCTURE unchanged:
 - Fe yoke equipped with muon chambers
 - ☆ RPCs 30x30 mm²
 - ☆ 7 layers equally spaced

- Yoke shields stray field, especially along the beam
 + improves muon ID
- ☆ STRUCTURE unchanged:
 - Fe yoke equipped with muon chambers
 - ☆ RPCs 30x30 mm²
 - ☆ 7 layers equally spaced

$\hat{\mathbf{x}}$	Size and po adjusted	osition			YOKE ENDCAPS				
	☆ scaled out	due to)	i	z [m]	FCC			
larger tracker					inner	3.76			
☆ thinner for smaller B				:	outer 5.70 5.				
YOKE BARREL									
	radius [m]CLICFCCinner4.464.48			radius [m]	CLIC	FCC			
			inner	0.49	0.40				
	outer 6.45 6.00				outer	6.45	6.00		

Next steps

- ☆ Impact of background hits to be investigated
- Thickness of vertex/tracker layers
 - * examine the coverage (Nhits vs polar angle)
 - studies ongoing to determine the effect of increasing the material budget to accommodate the needed additional cooling
 - ☆ feasibility of cooling and support structures
- Position of vertex/tracker layers
 - * performance studies (momentum resolution, tracking efficiency) ongoing
- Longitudinal segmentation of calorimeters
 - * may need to be revised to accommodate the needed additional cooling
- Dimensions of yoke and muon identification system

Part of the CDR Vol. 5: Lepton Collider/Experiment

A CLIC-inspired detector for FCC-ee

- 1. Overview
- 2. Vertex Detectors
- 3. Tracking System
- 4. Calorimetry
 - 4.1 Electromagnetic Calorimeter
 - 4.2 Hadronic Calorimeter
- 5. Yoke and Muon Identification System
- 6. Physics Performance
 - 6.1 Simulation and Reconstruction
 - 6.2 Performance for Lower Level Physics Observables
 - 6.2.1 Muon and Electron Energy Resolution
 - 6.2.2 Jet Reconstruction
 - 6.2.3 Particle Identification Performance
 - 6.2.4 Flavour Tagging

Part of the CDR Vol. 5: Lepton Collider/Experiment

A CLIC-inspired detector for FCC-ee

- 1. Overview
- 2. Vertex Detectors
- 3. Tracking System
- 4. Calorimetry
 - 4.1 Electromagnetic Calorimeter
 - 4.2 Hadronic Calorimeter
- 5. Yoke and Muon Identification System
- 6. Physics Performance
 - 6.1 Simulation and Reconstruction
 - 6.2 Performance for Lower Level Physics Observables
 - 6.2.1 Muon and Electron Energy Resolution
 - 6.2.2 Jet Reconstruction
 - 6.2.3 Particle Identification Performance
 - 6.2.4 Flavour Tagging

Thank you for your attention

A CLIC-inspired detector for FCC-ee – FCC-ee Detector Design Meeting 19.6.2017 | Emilia Leogrande

CLIC/ Beam conditions

Detector layout/ Vertex and Tracker sensitive areas

subdetector	CLIC sensor area [m ²]	FCC sensor area [m ²]
VTX barrel	0.487	0.358
VTX endcaps	0.351 (spirals)	0.185 (disks)
ITD1	0.63	0.56
ITD2	1.13	1.29
ITD3	1.10	1.25
ITD4	1.03	1.20
ITD5	0.98	1.14
ITD6	0.94	1.07
ITD7	0.91	1.00
OTD1-4	6.96	11.98
ITB1	0.79	0.77
ITB2	2.20	2.42
ITB3	5.22	5.83
OTB1	14.30	15.88
OTB2	20.32	24.91
OTB3	26.04	33.93

A CLIC-inspired detector for FCC-ee - FCCWeek 30.5.2017 | Emilia Leogrande

Сс	bil			;			
$\hat{\mathbf{x}}$	scaled out d	ue to la	ker	Vacuum tank			
Ŷ	thinner for smaller B field				radius [mm]	CLIC	FCC
	radius [mm]	radius [mm] CLIC FCC			inner	3483	3719
	inner	inner 3649 3885			outor	4200	4272
	outer	3993	3975		outer	4290	4272

- STRUCTURE unchanged:
- Fe yoke equipped with muon chambers
 - ☆ RPCs 30x30 mm²

Yoke	Coil scaled out d	ue to la	arger track	er Vacuum tank		
	thinner for s	smaller	radius [mm]	CLIC	FCC	
Solenoid	radius [mm]	CLIC	FCC	inner	3483	3719
	inner	3649	3885	outer	4290	4272
	outer	3993	3975		7230	TLIL
	→ Yo + i	ke shie mprove	lds stray fi es muon IE	eld, especially alc)	ong the	beam
 ★ STRUCTURE unchanged: 	! ☆ Size	and p	osition			

- Fe yoke equipped with muon chambers
 - ☆ RPCs 30x30 mm²

 Size and position adjusted scaled out due to larger tracker thinner for smaller B 				ENDCAPS			
				z [mm]	CLIC	FCC	
			1	inner	4179	3755	
				outer	5700	5300	
radius [mm]	CLIC	FCC		radius [mm]	CLIC	FCC	
inner	4461	4479		inner	490	400	
outer	6450	6000		outer	6450	6000	
L							

A CLIC-inspired detector for FCC-ee - FCCWeek 30.5.2017 | Emilia Leogrande