Update on optics constraints for injection and dump protection elements

C. Bracco, R. Bruce, B. Goddard, C. Wiesner, A. Lechner, M. Frankl

Main constraints (04/08/2016):

- Q4 gradient fixed within maximum $\pm 1 \%$
- Horizontal phase advance MKDs \rightarrow TCDQ $90^{\circ} \pm 4^{\circ}$
- TCDS: $\beta_{y, \text { min }} \geq 200 \mathrm{~m}$ (no more than 10% smaller than present value)
- TCDQ: $\beta_{y, \text { min }} \geq 145 \mathrm{~m}$ (no more than 10% smaller than present value)
- TCDS-MSD: $\beta_{x, \max } \leq 175 \mathrm{~m}$ at injection (aperture limitation)
- TCDQ: $\beta_{x, \text { min }} \geq 630 \mathrm{~m}$ and $\left|D_{x}\right| \leq 0.2 \mathrm{~m}$
- TCDQ movement during squeeze unidirectional and towards the beam, accumulated mechanical play \rightarrow degraded alignment precision (required $\pm 0.1 \mathrm{~mm}$)! Need BETS redesign.
- Phase advance MKD \rightarrow TCTs 0° or $180^{\circ}\left(\pm 10^{\circ}\right)$

Main constraints (04/08/2016):

- Q4 gradient fixed within maximum $\pm 1 \%$
- Horizontal phase advance MKDs \rightarrow TCDQ $90^{\circ} \pm 4^{\circ} \checkmark$
- TCDS: $\beta_{y, \text { min }} \geq 200 \mathrm{~m}$ (no more than 10% smaller than present value) \checkmark
- TCDQ: $\beta_{y, \text { min }} \geq 145 \mathrm{~m}$ (no more than 10% smaller than present value) \checkmark
- TCDS-MSD: $\beta_{x, \max } \leq 175 \mathrm{~m}$ at injection (aperture limitation)
- TCDQ: $\beta_{x, \text { min }} \geq 630 \mathrm{~m}$ and $\left|D_{x}\right| \leq 0.2 \mathrm{~m} \checkmark$
- TCDQ movement during squeeze unidirectional and towards the beam, accumulated mechanical play \rightarrow degraded alignment precision (required $\pm 0.1 \mathrm{~mm}$)! Need BETS redesign.
- Phase advance MKD \rightarrow TCTs 0° or $180^{\circ}\left(\pm 10^{\circ}\right)^{\checkmark}$

Main constraints (04/08/2016):

- Q4 gradient fixed within maximum $\pm 1 \% \quad \checkmark$
- Horizontal mhase advance MMEDs \rightarrow TCDO $90^{\circ} \pm 4^{\circ}$ V
- TCDS: $\beta_{y, \text { min }} \geq 200 \mathrm{~m}$ (no more than 10% smaller than present value) \checkmark
- TCDQ: $\beta_{y \text { min }} \geq 145 \mathrm{~m}$ (no more than 10% smaller than present value) \checkmark
- TCDS-MSD• $R \quad \leq 175 \mathrm{~m}$ at iniection (anerture limitation) \checkmark
- TCDQ: $\beta_{x, \text { min }} \geq 630 \mathrm{~m}$ and $\left|D_{x}\right| \leq 0.2 \mathrm{~m} \checkmark$
- TCDQ movement during squeeze unidirectional and towards the beam, accumulated mechanical play \rightarrow degraded alignment precision (required $\pm 0.1 \mathrm{~mm}$)! Need BETS redesign.
- Phase advance MKD \rightarrow TCTs 0° or $180^{\circ}\left(\pm 10^{\circ}\right)^{\checkmark}$
- Optics constraints at TDIS

Assumptions for these studies

- Reference optics: HLLHCV1.2 round
- Normalised emittance for σ calculation $=3.5 \mathrm{~mm}$ mrad
- β^{*} in IP1 and IP5 squeezed down to 15 cm
- Settings at collision: TCDQ at 9σ, TCT in IR1 and IR5 at 10.9σ
- $\Delta \mathrm{p} / \mathrm{p}=2 \mathrm{E}-4$ (as used for aperture calculations)
- Maximum orbit drift at TCDQ = 1.2 mm (possible to reduce this number by improving interlock BPM reliability and implementing the possibility of adapting the thresholds wrt energy)
- Effect of dispersion at TCTs neglected (some general margins included in the calculations)
- Only analytical calculations \rightarrow the validation of the final optics will require particle tracking (collaboration with WP5)

$D_{x} @$ TCDQ and MKD/TCT phase advance (end of squeeze)

TCDQ @ $12 \sigma=9 \sigma+1 \sigma^{*}+2 \sigma^{* *}$

TCTs @ $9.9 \sigma=10.9 \sigma-1 \sigma^{*}$

[^0]
$D_{x} @$ TCDQ and MKD/TCT phase advance (end of squeeze)

$D_{x}=0$ at TCDQ
Phase advance between MKD and TCTs (μ_{x}):
forbidden zones:
$56^{\circ}<\mu_{\mathrm{x}}<124^{\circ}$ and
$236^{\circ}<\mu_{\mathrm{x}}<304^{\circ}$
Constraints:

```
\mux}\leq5\mp@subsup{6}{}{\circ}\quad\mathrm{ or
124}\mp@subsup{4}{}{\circ}\leq\mp@subsup{\mu}{\textrm{x}}{}\leq23\mp@subsup{6}{}{\circ}\mathrm{ or
\mu
```


$D_{x} @$ TCDQ and MKD/TCT phase advance (end of squeeze)

$D_{x}=0$ at TCDQ
Phase advance between MKD and TCTs (μ_{x}):
forbidden zones:
$56^{\circ}<\mu_{\mathrm{x}}<124^{\circ}$ and $236^{\circ}<\mu_{\mathrm{x}}<304^{\circ}$

Constraints:

```
\mux}\leq5\mp@subsup{6}{}{\circ}\quad\mathrm{ or
124}\mp@subsup{4}{}{\circ}\leq\mp@subsup{\mu}{\textrm{x}}{}\leq23\mp@subsup{6}{}{\circ}\mathrm{ or
\mu}\geq304\mp@subsup{}{}{\circ
```


$D_{x} @$ TCDQ and MKD/TCT phase advance (end of squeeze)

$\mathrm{Dx} \neq 0(-2 \mathrm{~m} \leq \mathrm{Dx} \leq 2 \mathrm{~m})$
forbidden zones:
$52^{\circ}<\mu_{\mathrm{x}}<129^{\circ}$ and $232^{\circ}<\mu_{\mathrm{x}}<309^{\circ}$

Constraints:

$\mu_{x} \leq 52^{\circ}$	or
$129^{\circ} \leq \mu_{x} \leq 232^{\circ}$	or
$\mu_{x} \geq 309^{\circ}$	

"Forbidden zone" for different TCT/TCDQ retractions

- TCDQ @ 9σ (plus tolerances)
- TCT/TCDQ retraction reduced to 0σ
- Assumed maximum $D_{x}^{*} \Delta p / p$ contribution
- Forbidden zones enlarges by about 3° (on both sides) per 0.5σ

HL-LHC collimator settings @ 7TeV (20 cm β^{*})

TCDQ

- Assuming a maximum allowed temperature of 1400 C ("grey zone" for graphite, still ANSYS simulations needed!!) \rightarrow minimum gap $=3.6 \mathrm{~mm}$
- $\mathbf{0 . 2 5} \mathbf{~ m m}$ setup error \rightarrow minimum gap $=3.85 \mathrm{~mm}$
- SIS interlock $1.2 \mathrm{~mm} \rightarrow$ minimum gap $=5.05 \mathrm{~mm} \rightarrow$ Minimum allowed $\beta_{\mathrm{x}}=630 \mathrm{~m}$

Constraints due to energy deposition in TCDQ (asynchronous beam dump)

- β_{x} defines the position of the TCDQ
- The smaller the gap, the higher the particle density at the TCDQ edge
- TCC \#10/\#19, HL Annual Meeting 2016:
- First estimates of energy deposition and stresses in TCDQ absorber blocks for HL beams
- HLLHCV1.2 (β_{x} at TCDQ $=497 \mathrm{~m}$)
- TCDQ@3.9mm (= $8.6 \sigma-0.5 \sigma$ margin)
- Asynch beam dump Type 2 Erratic
- No issues found, stresses well below material limits - studies still to be updated including dynamical strain data (M. Calviani et al.)

Material	$\mathrm{C}-\mathrm{C} 1.75$	$\mathrm{C}-\mathrm{C} 1.4$
Max. Temp. $\left[{ }^{\circ} \mathrm{C}\right]$	1138	1280
Min. Princ. $[\mathrm{MPa}]$	-30	$\mathbf{- 3 1}$
Compr. Strength	69.6	69.6
Max. Princ. $[\mathrm{MPa}]$	$\mathbf{3 6}$	$\mathbf{4 2}$
Tensile Strength	61	61

M. Frankl, C. Di Paolo (EN/STI)

Constraints due to energy deposition in TCDQ (asynchronous beam dump)

- To evaluate effect of settings/optics on energy density in TCDQ, studied in addition a worst case scenario:
- TCDQ@3mm = highest particle density at TCDQ in case of a Type 2 Erratic
- Conclusions:
- Peak energy density increases by about 35%
- Stresses to be evaluated, but might be close to limits
- Recommend to aim for a gap larger than 3 mm

Constraints due to energy deposition in TCDQ (asynchronous beam dump)

- TCDQ minimum allowed gap > 3 mm
- Adding:
- 1.2 mm orbit drift
- 0.3 mm setup and optics errors
- 0.4 mm for dispersion offset ($\mathrm{D}_{\mathrm{x}}=2 \mathrm{~m}$ and $\Delta \mathrm{p} / \mathrm{p}=2 \mathrm{e}-4)$
- TCDQ minimum allowed gap $\geq 4.9 \mathrm{~mm}$
- Possible to relax it based on achievable reliability of interlock BPMs

$\beta_{x} @$ TCDQ constraints to reach present settings (TCDQ @ 7.3σ)

TCDQ at 7.3σ at end of squeeze

Beta Function @ TCDQ During Squeeze

Option 1: TCDQ @ 9 o during squeeze

- Optimum hierarchy wrt other collimators during full cycle ©
- Need BETS redesign $(-$
- Risk of accumulating mechanical play $*$
- Smaller gap at the end of the ramp \rightarrow more energy deposition on TCDQ in case of asynchronous beam dump \rightarrow constraints on β_{x} at TCDQ $\left.\geq 590 \mathrm{~m}\right) *$

Energy
$450 \mathrm{GeV} \quad$ Ramp $\quad 7 \mathrm{TeV} \quad$ Squeeze 7 TeV
β_{x} at TCDQ
$\sim 500 \mathrm{~m}$
~750-800 m

Option 1: TCDQ @ 5.5 mm during squeeze

- Slightly degraded protection of IR7 collimators (more escaping bunches in case of asynchronous beam dump) : to be checked by WP5!
- No need of BETS redesign ©

Option 1: TCDQ @ 5.5 mm during squeeze

- Slightly degraded protection of IR7 collimators (more escaping bunches in case of asynchronous beam dump) : to be checked by WP5!
- No need of BETS redesign ©

- No risk of accumulating mechanical play (:)
- Safe margin in terms of setting and energy deposition on TCDQ in case of asynchronous beam dump ($\sim 3.6 \mathrm{~mm}$) ©

Option 1: TCDQ @ 5.2 mm during squeeze

- Improved protection of IR7 collimators (more escaping bunches in case of asynchronous beam dump) $)$ to be checked by WP5!
- No need of BETS redesign ()

Option 1: TCDQ @ 5.2 mm during squeeze

- Improved protection of IR7 collimators (more escaping bunches in case of asynchronous beam dump) $)$ to be checked by WP5!
- No need of BETS redesign ()

Beam centre

* Assuming 1.2 mm orbit drift

Main constraints (08/06/2017):

- Q4 gradient fixed within maximum $\pm 1 \%$
- Horizontal phase advance MKDs \rightarrow TCDQ $90^{\circ} \pm 4^{\circ}$
- TCDS: $\beta_{y, \text { min }} \geq 200 \mathrm{~m}$ (no more than 10% smaller than present value)
- TCDQ: $\beta_{y, \text { min }} \geq 145 \mathrm{~m}$ (no more than 10% smaller than present value) \checkmark
- TCDS-MSD: $\beta_{x, \max } \leq 175 \mathrm{~m}$ at injection (aperture limitation)
- TCDQ: $\beta_{x, \text { min }}$ such that minimum gap at $7 \mathrm{TeV}>3 \mathrm{~mm}$ taking into account all margins (0.3 mm setup and optics errors $+D_{x}^{*}$ Dp/p + orbit offset depending on achievable interlock BPM reliability/accuracy) \checkmark
- Ideally no TCDQ movement during squeeze (favourable also from point of view of minimum allowed gap and thus $\beta_{x, \text { min }}$ constraints)
- D_{x} and Phase advance (strongest constraint!): for $-2 \mathrm{~m} \leq \mathrm{D}_{\mathrm{x}} \leq 2 \mathrm{~m}$ MKD \rightarrow TCTs $\mu_{\mathrm{x}} \leq 52^{\circ}$ or $129^{\circ} \leq \mu_{\mathrm{x}} \leq 232^{\circ}$ or $\mu_{\mathrm{x}} \geq 309^{\circ}$

[^1]
Constraints due to energy deposition in TDIS (injection failure)

- $\beta_{x} \times \beta_{y}$ defines the peak energy density in the TDIS during injection failures
- Thermo-mechanical studies showed that, with the present optics ($\beta_{x} \times \beta_{y}=104 \mathrm{~m} \times 43 \mathrm{~m}$), the stresses in Graphite could be at the material limit for HL beams
- To be verified in HiRadMat if the material can sustain HL energy densities (HRMT-28: joint test with LIU-TCDIs which have similar requirements - test to be completed soon)
- In any case, larger β s at the TDIS would be highly desirable to increase the margin

[^0]: * Margin for optics and setup errors
 ** 1.2 mm orbit drift at the TCDQ

[^1]: All these constraints are aimed to define an envelope for ABP optics studies, the final optics will have to be carefully checked and validated by means of particle tracking

