

Study of the MPD detector performance in pp collisions at NICA

Katherin Shtejer Díaz On behalf of the MPD Collaboration

VBLHEP, JINR, Russia

NICA Days 2017, November 6 - 10

Introduction

Phase diagram of strongly interacting matter

The physics goals that are pursued in NICA will be complementary to the experimental program at CERN(LHC), RHIC(BES) and FAIR(CBM):

NICA MPD: Moderate

temperature and much higher net baryon density in a mixed phase. Points to in-medium modification effects as signals of chiral symmetry restoration and phase transition.

Introduction

pp collisions

Basic measurements in p + p collisions are required:

- Reference data from light collision systems are needed for a complete picture of heavy ion collisions.
- Some signatures of in-medium modification effects reveal themselves though comparison of heavy-ion and p + p collisions, with appropriate scaling for the volumes.
- Better understanding of p + p collisions is just essential.

Multipurpose Detector (MPD)

MPD: designed to accomplish a wide range of tasks of the NICA physics program.

Provide collisions in a wide range of atomic mass: A = 1 - 197.

High-precision tracking and particle identification in the full space-phase under a high multiplicity environment is expected.

Maximum centre-of-mass energy	Average luminosity
$\sqrt{s_{NN}}$ = 11 GeV (Au ⁷⁹⁺)	$L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$
$\sqrt{s_{NN}}$ = 20 GeV (p)	$L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Stage I: barrel part (- 2020)

TPC:

- $\eta < |2.0|$
- Momentum resolution for charge particles < 3% at 0.1 < p_T < 1 GeV/c
- Two track resolution $\approx 1 \text{ cm}$

TOF:

- $\eta < |1.4|$
- Large space-phase coverage.
- High granularity

p + p event simulation

PHSD model (in HSD mode) was used to generate events
HSD mode => without partonic QGP phase.
High energy inelastic hadron – hadron collision in HSD is described by
FRITIOF string model (including PYTHIA). The description of *p+p* reactions is almost equivalent to the Lund String model.

- Analyzed TPC Kalman Tracks also identified in TOF
- The reconstructed tracks are associated with the primary MC particle that 'caused' the reconstructed track.

* **Primary particles** are defined as prompt particles produced in the collision including products of strong and electromagnetic decays, as well as weak decay of charmed and beauty particles except feed-down products from strange and other secondary particles.

Analysis

Protons from pp collisions

Generation (HSD)

Reconstruction (MPRRoot)

Increasing collision energy:

- pseudorapidity range of produced protons is enlarged
- proton multiplicity decreases

Pseudorapidity distributions

Generation (HSD)

For $\sqrt{s_{NN}} = 4$ GeV, the HSD model predicts a larger production of protons over π in all η range. In the reconstruction this happens at large $|\eta| > 1$.

Both, model and reconstruction, show an enhanced production of pions over protons with the increasing collision energy.

NICA Days 2017, November 6-10

Reconstruction (MPRRoot)

p_{T} distributions

Generation (HSD)

For $\sqrt{s_{NN}} = 4 \text{ GeV}$, the HSD model predicts a larger production of protons over π^+ at all p_T range. In the reconstruction this happens at $p_T > 0.5 \text{ GeV/c}.$

Both, model and reconstruction, show that $p_{T, pion}$ distributions peaks at values lower than $p_{T, proton}$. The pion and kaon production from p+p increases with the increasing collision energy while protons

NICA Days 2017, November 6-10

Х

MC vs. Reconstruction

Multiplicity

PID

Occupancy of TPC

<Events> with charge track multiplicity

n < 2.0

p+p (HSD model)

25 √s_{NN} (GeV)

 $|\eta| < 2.0$

p+p (HSD model)

20

15

15

20

25

√s_{NN} (GeV)

= 0, 1, 2 in TPC vs $\sqrt{s_{NN}}$

Primary Vertex

XY distribution (all tracks in TPC) Charge particles: $p + \pi + K$

XY distribution (Ntrk ≤ 6 in TPC) All charge particles!

RMS of the primary vertex reconstruction perpendicular $(\delta_x \delta_y)$ and along (δ_z) the beam direction for a primary track multiplicity in TPC ($1 \le Ntrk \le 6$).

Corrections for reconstruction effects due to acceptance, vertex reconstruction efficiency and tracking efficiency should be defined.

Events with low multiplicities in TPC (\leq 3) might be compromised.

Neutral Lambda Baryon

Reconstruction of strange hyperons from p + p collisions in the MPD detector is possible by combining charged tracks reconstructed in the TPC.

Summary

- The performance studies of MPD, in its first stage, include the simulations of p+p collisions to estimate the feasibility of TPC as the main tracking detector for event reconstruction.
- Simulations indicates that the pseudorapidity and p_T density distributions as well as the multiplicity of charge hadrons from p+p collisions can be measured in MPD at collision energies $\sqrt{s_{NN}} = 4 - 20$ GeV. Still fine-tuning of the analysis is required.
- Charge tracks from p+p collisions can be efficiently identified and separated.
 MPD PID performance is considerably enhanced using the combination TPC+TOF.
- Primary and secondary vertex identification in MpdRoot allows to detect Λ⁰ baryon. A p+p collision system has the advantage of a weak p,π⁻ combinatorial background. However the low multiplicity of charge particles is a challenge.