Looking for strange particles in ALICE

What are strange particles?

hadrons (baryons or mesons) containing at least one strange (s) quark

Today's periodic system of the fundamental building blocks

	Quarks		Leptons	
Generation 3	Тор	Bottom	τ Tau	ντ Tau-neutrino
Generation 2	Charm	Strange	μ _{Muon}	Vμ Muon-neutrino
Generation 1	Up	Down	e Electron	Ve Electron-neutrino

Quark Confinement

Quarks can not exist free in nature They can only exist bound inside hadrons

baryons consisting of 3 quarks

mesons consisting of a quark and an anti-quark

Baryons qqq and Antibaryons q̄q̄ō	Ī
Baryons are fermionic hadrons.	
These are a few of the many types of baryons	•

These are a few of the many types of baryons.						
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	
р	proton	uud	1	0.938	1/2	
$\bar{\mathbf{p}}$	antiproton	ūūā	-1	0.938	1/2	
n	neutron	udd	0	0.940	1/2	
Λ	lambda	uds	0	1.116	1/2	
Ω-	omega	SSS	-1	1.672	3/2	

$\begin{tabular}{ll} Mesons & q\overline{q} \\ Mesons & are & bosonic & hadrons \\ These & are & a & few & of & the & many & types & of & mesons. \\ \end{tabular}$

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π+	pion	ud	+1	0.140	0
K-	kaon	sū	-1	0.494	0
ρ+	rho	ud	+1	0.776	1
\mathbf{B}^0	B-zero	d̄b	0	5.279	0
η_{c}	eta-c	сē	0	2.980	0

We will be looking for neutral strange particles, which travel some distance (mm or cm) from the point of production (collision point) before they decay into two oppositely charged particles

$$\begin{array}{ll} \Lambda \rightarrow & \tau = 2.6 \, \text{x} 10^{\text{-}10} \, \text{s} \\ \pi^-\text{p} & \text{ct} = 3 \text{x} 10^{\text{1}0} \, \text{cm s}^{\text{-}1} \, \text{x} 2.6 \text{x} 10^{\text{-}10} \, \text{s} \\ - & - & 7.2 \, \text{cm distance from the point of interaction} \\ \Lambda \rightarrow \pi^+\text{p} & \end{array}$$

Weak decays: strangeness is not conserved

How do we find V0s?

We look for two opposite tracks, having the same origin, which is not the interaction (collision) point

How do we find V0s?

We look for two opposite tracks, having the same origin, which is not the interaction (collision) point

How do we identify each V0?

$$K^0_s \rightarrow \pi^+\pi^-$$

$$\Lambda \to \pi^- p^+$$

V0 decay:

a neutral particle (no track) gives suddenly two tracks

Identify V0s from the decay topology

$P = Q \cdot B \cdot R$

P momentum

Q electric charge

B magnetic field

R radius of curvature

How do we identify each V0?

 $\mathsf{E} = \mathsf{E}_1 + \mathsf{E}_2$

 $E^2 = p^2c^2 + m^2c^4$

Calculate the (invariant) mass

Energy conservation Momentum conservation Total energy

$$c=1$$

C=1
$$E^2 = p^2 + m^2$$

$$E^2 = p^2 + m^2$$

$$E = E_1 + E_2$$
 $E_1^2 = p_1^2 + m_1^2$ $E_2^2 = p_2^2 + m_2^2$

$$E^2 = p^2 + m^2$$
 $m^2 = E^2 - p^2 = (E_1 + E_2)^2 - (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2 \mathbf{p}_1 \cdot \mathbf{p}_2$

Calculate the mass of the initial particle from the values of the mass and the momentum of the final particles

Particle Identification (done by a number of PID detectors) \implies $m_1 m_2$ Radius of curvature of the particle tracks due to magnetic field

P=QBR (P momentum, Q electric charge, R radius of curvature, B magnetic field)