Strangeness enhancement in lead-lead collisions - Analysis of large event samples from lead collisions - •Find number of K_s , Λ , anti- Λ - Calculate particle yields - Calculate strangeness enhancement taking into account particle yields in proton collisions - Continuum : irreducible background due to random combinations of $\pi^+\pi^-$ or π^-p - Fit curves to background (2nd degree polynomial) and peak (gaussian) - Find number of K_s , Λ , anti- Λ after background subtraction ## Geometry of a Pb-Pb collision ### Peripheral collision - Large distance between the centres of the nuclei - Small number of participants - Few charged particles produced (low multiplicity) #### Central collision - Small distance between the centres of the nuclei - Large number of participants - Many charged particles produced (high multiplicity) ## Centrality of Pb-Pb collisions Distribution of the signal amplitude of V0 (plastic scintillators) red line: described by model (Glauber) | Centrality | $dN_{ m ch}/d\eta$ | $\langle N_{\rm part} \rangle$ | $(dN_{\rm ch}/d\eta)/(\langle N_{\rm part} \rangle/2)$ | |------------|--------------------|--------------------------------|--| | 0%-5% | 1601 ± 60 | 382.8 ± 3.1 | 8.4 ± 0.3 | | 5%-10% | 1294 ± 49 | 329.7 ± 4.6 | 7.9 ± 0.3 | | 10%-20% | 966 ± 37 | 260.5 ± 4.4 | 7.4 ± 0.3 | | 20%-30% | 649 ± 23 | 186.4 ± 3.9 | 7.0 ± 0.3 | | 30%-40% | 426 ± 15 | 128.9 ± 3.3 | 6.6 ± 0.3 | | 40%-50% | 261 ± 9 | 85.0 ± 2.6 | 6.1 ± 0.3 | | 50%-60% | 149 ± 6 | 52.8 ± 2.0 | 5.7 ± 0.3 | | 60%-70% | 76 ± 4 | 30.0 ± 1.3 | 5.1 ± 0.3 | | 70%-80% | 35 ± 2 | 15.8 ± 0.6 | 4.4 ± 0.4 | peripheral collisions central collisions ## Strangeness enhancement calculation Yield: number of particles produced per interaction = Nparticles(produced)/Nevents Efficiency = Nparticles(measured)/Nparticles(produced)* Yield = Nparticles(measured)/(efficiency x Nevents) K_s -Yield (pp) = 0.25 /interaction; Λ -Yield(pp) = 0.0617 /interaction; $\langle N_{part} \rangle = 2$ for pp Strangeness enhancement: the particle yield normalised by the number of participating nucleons in the collision, and divided by the yield in proton-proton collisions** ^{*}assumption on efficiency values : to match yields in Analysis Note Measurement of Ks and Λ spectra and yields in Pb–Pb collisions at √sNN=2.76 TeV with the ALICE experiment ^{*}pp yields at 2.76 TeV from interpolation between 900 GeV and 7 TeV Analysis Note "Ks, Λ and antiΛ production in pp collisions at 7 TeV" ### Strangeness enhancement : one of the first signals of QGP Enhancement increases with number of strange quarks in the hadron (Ω has 3, Ξ has 2, Λ has 1)