Strangeness enhancement in lead-lead collisions

- Analysis of large event samples from lead collisions
- •Find number of K_s , Λ , anti- Λ
- Calculate particle yields
- Calculate strangeness enhancement taking into account particle yields in proton collisions

- Continuum : irreducible background due to random combinations of $\pi^+\pi^-$ or π^-p
- Fit curves to background (2nd degree polynomial) and peak (gaussian)
- Find number of K_s , Λ , anti- Λ after background subtraction

Geometry of a Pb-Pb collision

Peripheral collision

- Large distance between the centres of the nuclei
- Small number of participants
- Few charged particles produced (low multiplicity)

Central collision

- Small distance between the centres of the nuclei
- Large number of participants
- Many charged particles produced (high multiplicity)

Centrality of Pb-Pb collisions

Distribution of the signal amplitude of V0 (plastic scintillators)

red line: described by model (Glauber)

Centrality	$dN_{ m ch}/d\eta$	$\langle N_{\rm part} \rangle$	$(dN_{\rm ch}/d\eta)/(\langle N_{\rm part} \rangle/2)$
0%-5%	1601 ± 60	382.8 ± 3.1	8.4 ± 0.3
5%-10%	1294 ± 49	329.7 ± 4.6	7.9 ± 0.3
10%-20%	966 ± 37	260.5 ± 4.4	7.4 ± 0.3
20%-30%	649 ± 23	186.4 ± 3.9	7.0 ± 0.3
30%-40%	426 ± 15	128.9 ± 3.3	6.6 ± 0.3
40%-50%	261 ± 9	85.0 ± 2.6	6.1 ± 0.3
50%-60%	149 ± 6	52.8 ± 2.0	5.7 ± 0.3
60%-70%	76 ± 4	30.0 ± 1.3	5.1 ± 0.3
70%-80%	35 ± 2	15.8 ± 0.6	4.4 ± 0.4

peripheral collisions

central collisions

Strangeness enhancement calculation

Yield: number of particles produced per interaction = Nparticles(produced)/Nevents

Efficiency = Nparticles(measured)/Nparticles(produced)*

Yield = Nparticles(measured)/(efficiency x Nevents)

 K_s -Yield (pp) = 0.25 /interaction; Λ -Yield(pp) = 0.0617 /interaction; $\langle N_{part} \rangle = 2$ for pp

Strangeness enhancement: the particle yield normalised by the number of participating nucleons in the collision, and divided by the yield in proton-proton collisions**

^{*}assumption on efficiency values : to match yields in Analysis Note Measurement of Ks and Λ spectra and yields in Pb–Pb collisions at √sNN=2.76 TeV with the ALICE experiment

^{*}pp yields at 2.76 TeV from interpolation between 900 GeV and 7 TeV Analysis Note "Ks, Λ and antiΛ production in pp collisions at 7 TeV"

Strangeness enhancement : one of the first signals of QGP

Enhancement increases with number of strange quarks in the hadron (Ω has 3, Ξ has 2, Λ has 1)