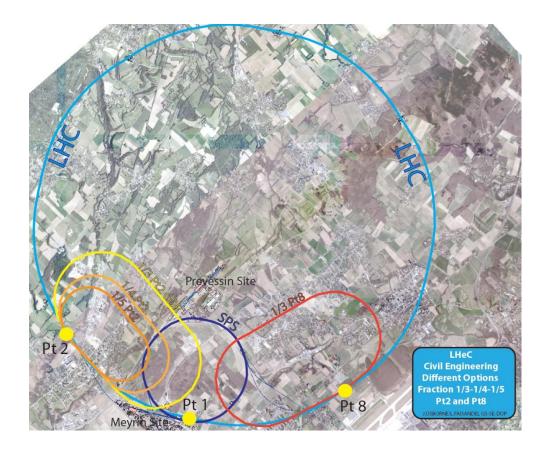


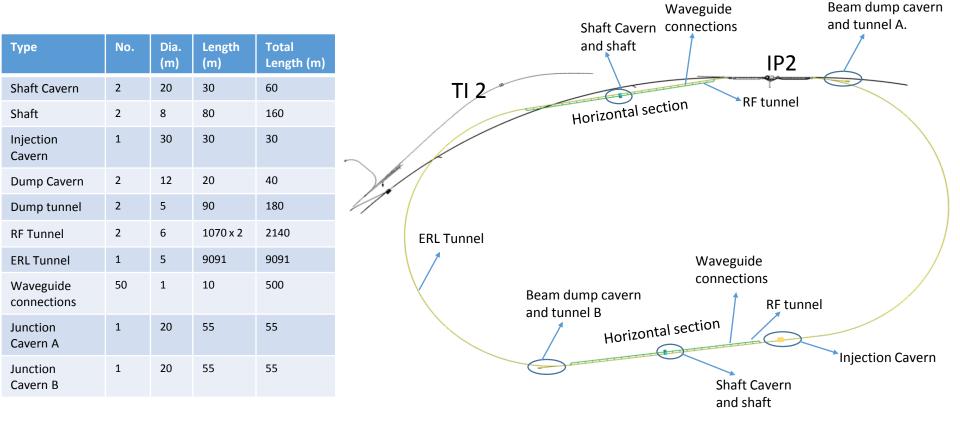
Civil Engineering for FCC-eh and LHeC

Matthew Stuart , John Osborne & Jo Stanyard (SMB - Site Engineering - FAS Section)

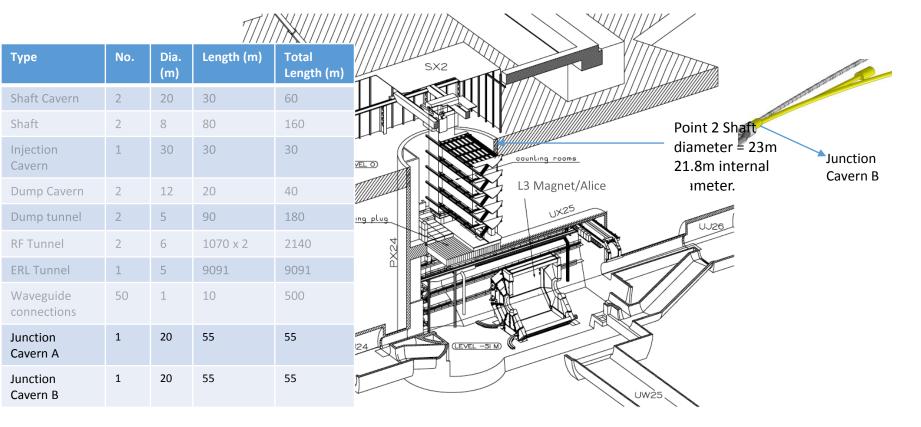
Acknowledgements to Max Klein, Oliver Bruning, Alex Bogacz & Frank Gerigk.


- Scope of LHeC & FCC-eh Civil Engineering
- A recap of the LHeC proposal and the options presented at previous FCC weeks.
- Changes to the FCC layout and the impact on FCC-eh position
- Preferred FCC-eh position
- LHeC and FCC-eh Cross-sections
- Future Challenges

FCC-eh – Alternative Dimensions:

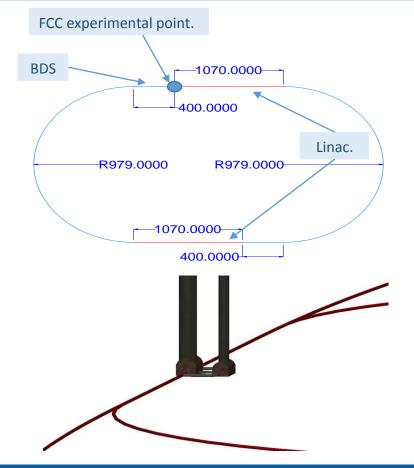

- It was proposed that the LHeC machine could be scaled down to:
 - 1/5
 - 1/4
 - 1/3
- Allows reduced cost of tunnelling.
- Other structures would remain the same.
- Point 2 preferred as it allows infrastructure to be located on CERN land.

Scope of LHeC Civil Engineering



Scope of LHeC Civil Engineering

John Osborne June 26th 2014

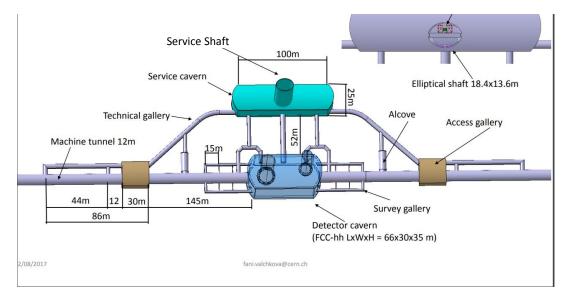


Tunnel Dimensions:

- 400m Beam Delivery System (BDS)
- 1070m Linac
- 979m radius arcs (x2)
- 400m drift section.
- Total Length of 9091m for ERL tunnel plus 2140m of RF tunnel.

Cavern and shaft requirements:

- Experimental shaft and cavern
 - 15m dia. 175m depth Shaft proposed for Point L
- Access shaft and cavern



Tunnel Dimensions:

- 400m Beam Delivery System (BDS)
- 1070m Linac
- 979m radius arcs (x2)
- 400m drift section.
- Total Length of 9091m for ERL tunnel plus 2140m of RF tunnel.

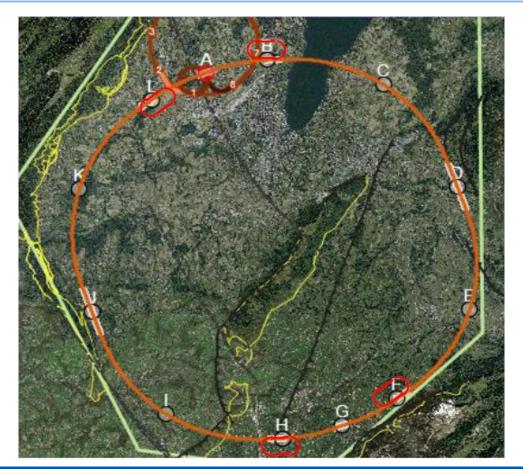
Cavern and shaft requirements:

- Experimental shaft and cavern
 - 15m dia. 175m depth Shaft proposed for Point L
- Access shaft and cavern

<u>Point L</u>

- Geological risk Karstic Limestone.
- Further probing to check geology required.

<u>Point B</u>

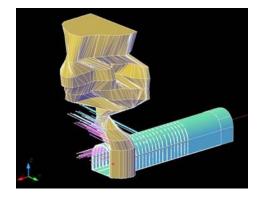

• Low geological risk (molasse) anticipated but could encounter Jura limestone.

<u>Point F</u>

- High geological uncertainty in this region
- Very far from existing CERN sites.

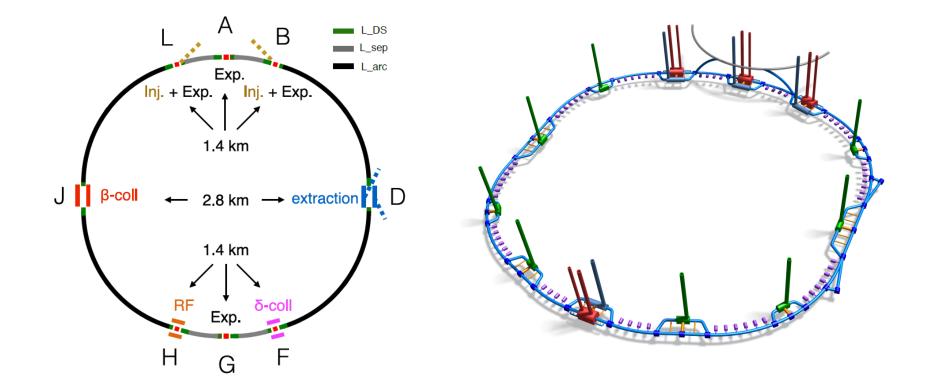
<u>Point H</u>

- Very far from existing CERN sites
- Low geological risk (molasse).

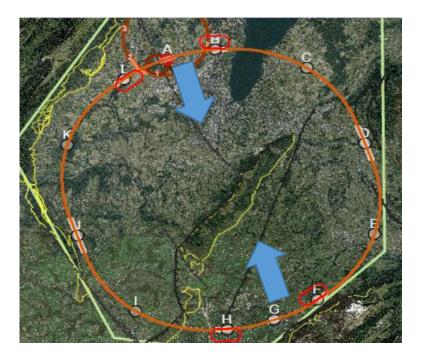


Limestone Properties:

- Hard rock
- Normally considered as sound tunneling rock
- In this region fractures and karsts encountered
 - Risk of tunnel collapse
 - High inflow rates measured during LEP construction (600L/sec)
 - Clay-silt sediments in water
 - Rockmass instabilities



FCC Layout Changes



Rome 2016 Layout

Updates since FCC Week 2016 layout:

- Reduced depth below surface level.
- Reduced length of straight sections at J and D.
- Increased tunnel length from A-L, A-B and G-F, G-H.
- Avoids Jura Limestone and Pre-Alps region.
- Reduced Total Tunnel Length.

FCC Layout Updates 2017

ARUP 🖗

* 🔺 💿 😧 🏦 🗳

Highlights:

Alianment

• Avoids Jura and Pre-Alps Limestone.

Query

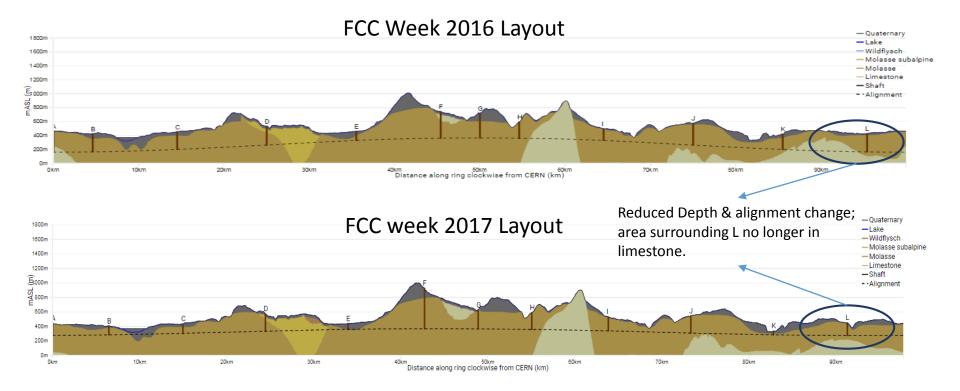
• Only one sector containing Limestone.

Shafts

- Significantly reduced total shaft length.
- Experimental Site at Point A on existing CERN land.
- Avoids extremely large overburden (with the exception of point F – alternative access options being considered).

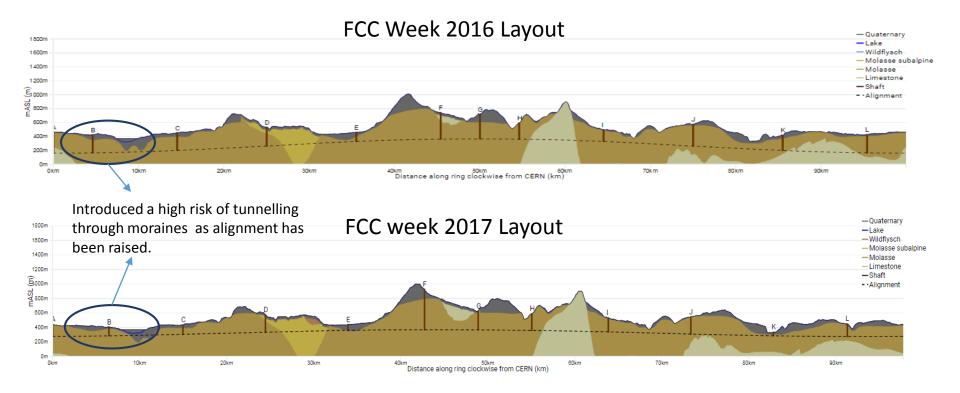
Alignment Location

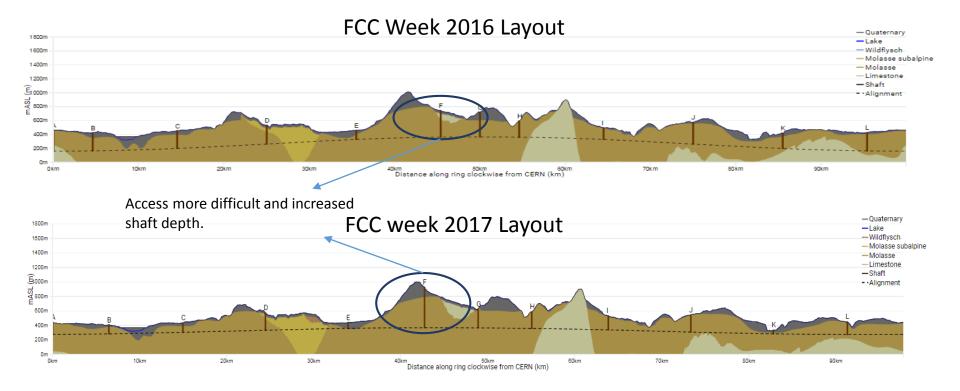
Geolog	y Intersec	ted by Shafts	Shaft Depths				
		5	Shaft Depth (m)			Geology	(m)
Point	Actual	Molasse SA	Wildflysch	Quaternary	Molasse	Urgonian	Limestone
Α	166						
в	123						
с	130						
D	240						
Е	79						
F	558						
G	259						
н	230						
1	193						
J	237						
к	51						
L	175						
Total	2442	45	0	439	1958	0	0



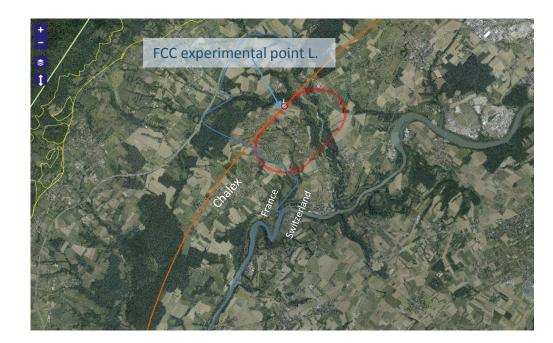
John Osborne, Jo Stanyard & <u>Matthew Stuart</u> (SMB-SE-FAS)

LHeC and FCC-eh Workshop 2017







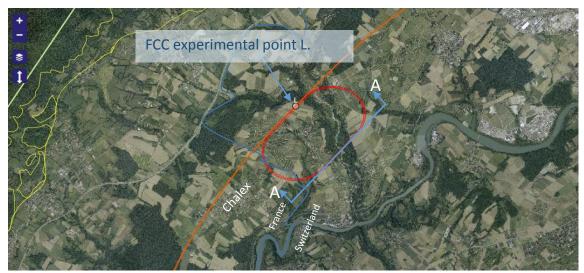

<u>Why is experimental point L</u> preferred?

Positives:

- Low geological risk compared to other locations, anticipated tunnelling in molasse only.
- Close to current CERN site.
- FCC ring relatively shallow at this point, therefore shallower shafts.

Remaining problems:

- Located inside the FCC ring so integration with other structures to be studied.
- Depth below Allondon to be evaluated.

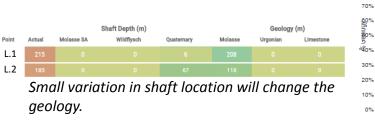

1800m 1400m 1000m 10

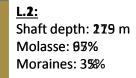
<u>Geology:</u>

Manipulated FCC TOT to show a cross section of geology through the location of the FCC-eh tunnels:

- FCC eh tunnels should aim to be located in 100% Molasse.
- Approximately 180m 215m deep shafts located mainly in molasse with the exception of the moraines at the surface.
- Shafts avoid Nature Reserves and watercourses. (However, both shafts are located in Switzerland)

Cross Section of Geology at A-A

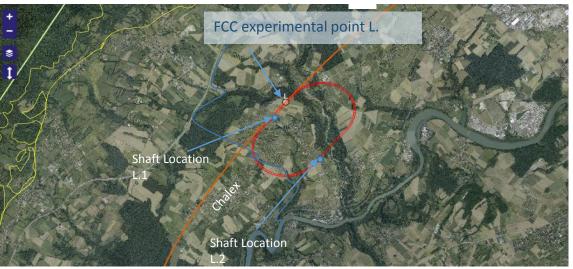

FCC-eh Geology



Geology:

Manipulated FCC TOT to show a cross section of geology through the location of the FCCeh tunnels:

- FCC eh tunnels should aim to be located in • 100% Molasse.
- Approximately 180m 215m deep shafts ٠ located mainly in molasse with the exception of the moraines at the surface.
- Shafts avoid Nature Reserves and . watercourses. (However, both shafts are located in Switzerland)

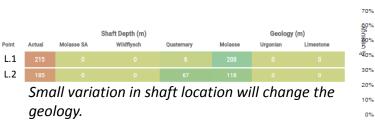


100% one 80%

10%

0%

L.1 L.2


FCC-eh Geology

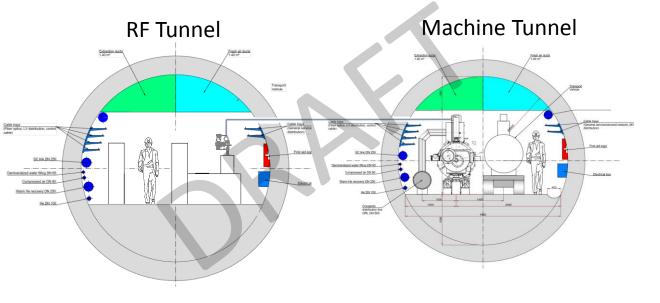

<u>Geology:</u>

Manipulated FCC TOT to show a cross section of geology through the location of the FCC-eh tunnels:

- FCC eh tunnels should aim to be located in 100% Molasse.
- Approximately 180m 215m deep shafts located mainly in molasse with the exception of the moraines at the surface.
- Shafts avoid Nature Reserves and watercourses. (However, both shafts are located in Switzerland)

Nature Reserves
Wetlands
Nature Area

90% 80%


L.1 L.2

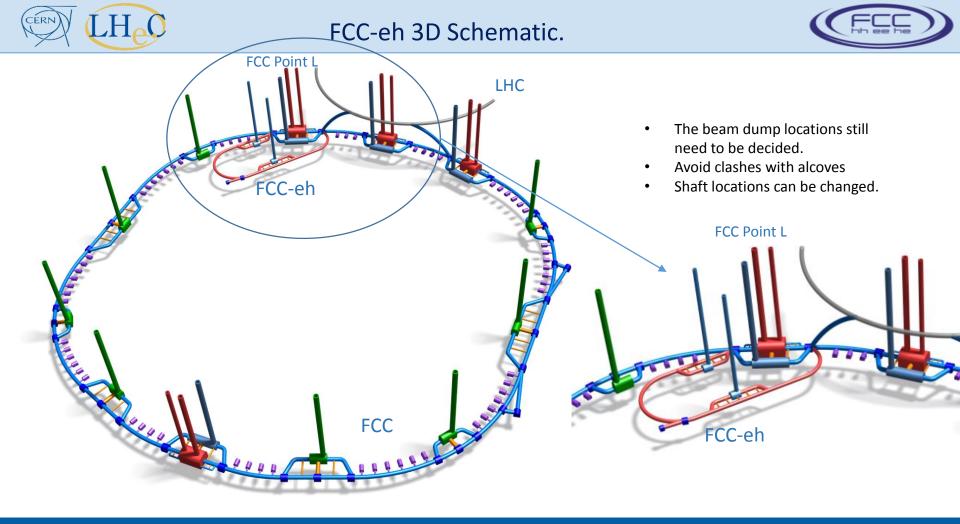
<u>Please note this is a draft cross-section</u> <u>used to identify an adequate diameter</u> <u>for the ERL Tunnel.</u>

- 5m appears to be a reasonable diameter at this stage (compared to 6m for FCC).
- This corresponds to the 5.2m used by the European XFEL.
- The arcs could potentially be smaller (this would depend on the requirements for Cooling and Ventilation).
- Services are assumptions to allow an estimate of the tunnel diameter to be produced.
- A full integration study will be required to achieve a complete tunnel cross-section.

Thanks to A.Bogacz & F.Gerigk

- Similar to High Powered SPL
- RF supply tunnel diameter 6m (2014 report)
 - Information on klystron and modulator dimensions required as well as the required services.
- Removes requirement for multiple shafts to supply power from the surface.

<u>Please note this is a draft cross-section</u> <u>used to identify an adequate diameter</u> <u>for the ERL Tunnel.</u>

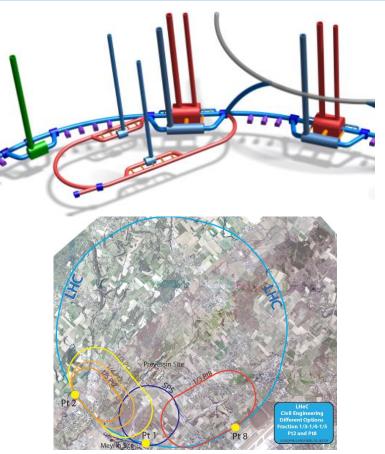

- 5m appears to be a reasonable diameter at this stage (compared to 6m for FCC).
- This corresponds to the 5.2m used by the European XFEL.
- The arcs could potentially be smaller (this would depend on the requirements for Cooling and Ventilation).
- Services are assumptions to allow an estimate of the tunnel diameter to be produced.
- A full integration study will be required to achieve a complete tunnel cross-section.

Cooling entilation Demineralized water DN250 Demineralized water DN250 Cable trays (Fiber optics, LV distribution, control (General service/secured network, MV , distribution) cable) First aid eqpt. SC link DN 250 eralized water filling DN 65 Compressed air DN 80 Electrical box Varm He recovery DN 250 He DN 100 LHeC/FCC-eh RE-CIRCULATION ARC CROSS SECTION FCC-EH-1.1700.0001 SUPERVISEUR : J:OSBORNE DESIGNER : P.SERAFINO 3

John Osborne, Jo Stanyard & Matthew Stuart (SMB-SE-FAS)

Thanks to A.Bogacz & F.Gerigk

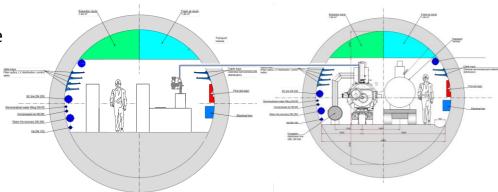
LHeC and FCC-eh Workshop 2017



Summary - Conclusions

Conclusions:

- Due to the new layout of FCC position L is the preferred location:
 - Good geological data and suitable geology.
 - Close to CERN but not interfering with current infrastructure.
- Still compatibility challenges to overcome:
 - Connection to FCC tunnel.
 - Layout to avoid other FCC structures.
- Other lengths are possible, this is a modular approach and can be attached to other projects.
- Infrastructure for FCC-eh located in Switzerland, for LHeC located in France.
- Using point 2 all surface infrastructure can be located in France for LHeC.


FCC Tunnel

Future Steps:

- Continue the civil engineering feasibility study in more detail for location L:
 - Cost & schedule study
 - Integration study
- Continue to design a layout for the FCC-eh tunnels that is compatible with FCC infrastructure.
- Consultant to produce a cost and schedule study for FCC-eh.
- Possibility to study one machine for both LHC and FCC

LHeC/FCC-eh Straight sections

www.cern.ch

FCC Dimensions

Point	Function	LSS length [km]	Depth [m]	Detector shaft Ø [m]	Access shaft Ø [m] ¹⁾	Detector cavern LxWxH [m]	Service cavern ²⁾ LxWxH [m]	Technical galleries [km] ³⁾			
А	Main experiment	1.4	152	15; 10	18	66x35x35	1XXx25x15	?			
В	Side experiment; injection	1.4	121	15; 10	12	66x30x35	1 <mark>XX</mark> x25x15	?			
С	Mid-arc technical point	-	127	-	12	-	XXx25x15	-			
D	Beam extraction	2.8	205	-	12	-	XXx25x15	± 1.4			
E	Mid-arc technical point	-	89	-	12	-	XXx25x15	-			
F	RF	1.4	476	-	12	-	XXx25x15	± 0.7			
G	Main experiment	1.4	307	15; 10	18	66x35x35	1XXx25x15	?			
н	Momentum collimation	1.4	266	-	12	-	XXx25x15	± 0.7			
I.	Mid-arc technical point	-	198	-	12	-	XXx25x15	-			
J	Betatron collimation	2.8	248	-	12	-	XXx25x15	± 1.4			
К	Mid-arc technical point	-	88	-	12	-	XXx25x15	-			
L	Side experiment; injection	1.4	172	15; 10	12	66x30x35	1 <mark>XX</mark> x25x15	?			
1) Subject to outcome of transport and logistics study 2) Single combined service cavern (experiment/machine) 3) Waiting for replies from accelerator systems											

John Osborne, Jo Stanyard & Matthew Stuart (SMB-SE-FAS)

LHeC and FCC-eh Workshop 2017

Different Options

- It was proposed that the LHeC machine could be scaled down to:
 - 1/5
 - 1/4
 - 1/3
- Allows reduced cost of tunnelling.
- When applied to FCC it allows different locations of tunnels and shafts to be studied.
 - More potential to avoid protected areas.
 - Can avoid clashes with FCC Alcoves.

