Small-x resummation in PDF fits and implications for high-energy colliders

Marco Bonvini

Sapienza University of Rome and INFN, Rome 1 unit

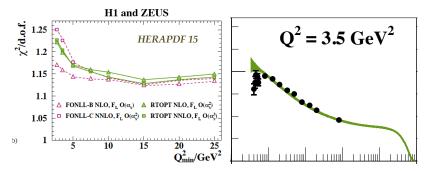
LHeC and FCC-eh workshop, CERN, 13 Sept 2017

Related to work with Simone Marzani, Claudio Muselli, Tiziano Peraro and the NNPDF collaboration (Juan, Luca, Richard, StefanoF, Valerio)

LHeC (FCC-eh) will probe x down to $x \sim 10^{-6}$ (10^{-7}) for $Q^2 \sim 2 \text{ GeV}^2$

HERA reached $x\sim 2\times 10^{-5}$ at that scale

Small-x region poorly described by fixed-order perturbative QCD factorization Tension between HERA data at low Q^2 and low x with theory



NNLO theory happens to describe worse low- Q^2 low-x data than NLO

Small-x resummation

It allows to explain and cure these effects

We are not the first ones to argue this However, we are probably the first ones to *prove* it!

How?

We use fixed-order perturbative collinear QCD factorization, supplemented by the resummation of small-x logarithms, to fit PDFs from data We are able to successfully describe and fit the low- Q^2 low-x HERA data Collinear QCD factorization:

Observable:
$$\sigma = \sigma_0 C(\alpha_s(\mu)) \otimes f(\mu) \left\lfloor \otimes f(\mu) \right\rfloor$$
Evolution: $\mu^2 \frac{d}{d\mu^2} f(\mu) = P(\alpha_s(\mu)) \otimes f(\mu)$

Any object with a perturbative expansion can potentially contain a logarithmic enhancement:

- coefficient functions $C(\alpha_s(\mu))$ (observable)
- splitting functions $P(\alpha_s(\mu))$ (evolution)

At small x, both objects contain large logarithms $\log \frac{1}{x}$ in the singlet sector and may spoil perturbativity \rightarrow resummation

Small-x resummation formalism based on k_t -factorization and BFKLDeveloped in the 90s-00s[Catani,Ciafaloni,Colferai,Hautmann,Salam,Stasto]

[Altarelli,Ball,Forte] [Thorne,White]

Known at LLx and NLLx since many years, but very limited number of applications. Why?

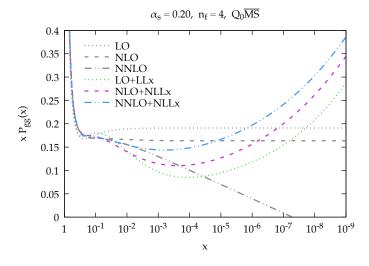
Small-x resummation is a hell!

Various implementations, with different pros and cons, more or less all in agreement but difficult to implement and with no public codes available

Recent developments: [MB,Marzani,Peraro 1607.02153][MB,Marzani,Muselli 1708.07510]

- we took (and improved) the ABF [Altarelli,Ball,Forte 1995,...,2008] procedure to resum splitting functions and developed a new formalism for coefficient functions
- we have all the ingredients for describing DIS process at small x, including mass effects and heavy flavour matching conditions in DGLAP evolution
- we have been able to match resummation to NNLO, allowing NNLO+NLLx phenomenology
- we published (and keep developing) a public code HELL: High-Energy Large Logarithms www.ge.infn.it/~bonvini/hell which delivers resummed splitting functions and coefficient functions
- HELL has been interfaced to APFEL (apfel.hepforge.org) opening the door to its usage for PDF fitting

A representative result



There is much more on the papers...

APFEL+HELL \rightarrow make possible a PDF fit with small-x resummation

NNPDF (3.1) framework:

- NeuralNet parametrization of PDFs, MonteCarlo uncertainty, ...
- variable flavour number scheme with mass effects (FONLL)
- charm PDF is fitted
- a large variety of DIS and hadron collider data (~ 4000 datapoints)

•

```
We have performed NLO, NLO+NLLx, NNLO, NNLO+NLLx fits

→ a paper will appear soon! [Ball,Bertone,MB,Forte,Marzani,Rojo,Rottoli 1709.xxxxx]
```

One significant difference in the HERA data we include:

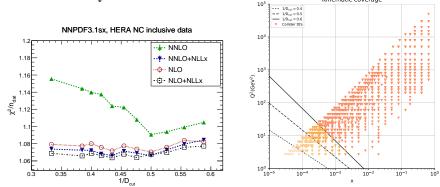
Lowest Q^2 HERA bins	NNPDF3.1	NNPDF3.1sx (these fits)
$Q^2 = 3.5 \mathrm{GeV^2}$	included	included
$Q^2 = 2.7 { m GeV}^2$	excluded	included
$Q^2 = 2.0 \mathrm{GeV}^2$	excluded	excluded

Fit results: χ^2 as quality estimator and the onset of BFKL dynamics

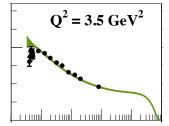
$\chi^2/N_{\rm dat}$	NLO	NLO+NLLx	NNLO	NNLO+NLLx
DIS-only Global	1.117 1.122	1.118 1.127	1.126 1.135	1.104 1.106
Global	these are similar		largest	smallest

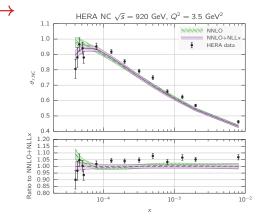
Hierarchy as expected from splitting function behaviour!

Mostly due to HERA data: we study the $\chi^2/N_{\rm dat}$ profile as we cut out HERA data at small x small Q^2

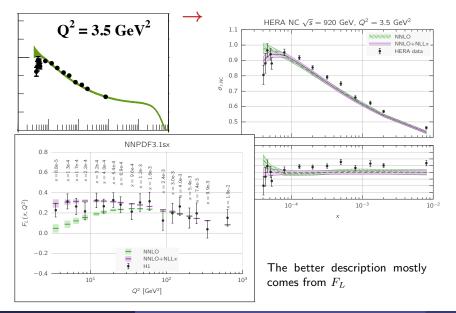


Fit results: description of the HERA data

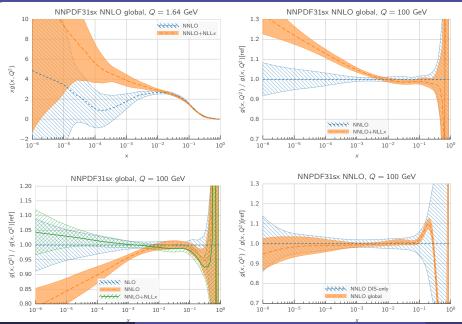




Fit results: description of the HERA data



Fit results: impact on PDFs - the gluon

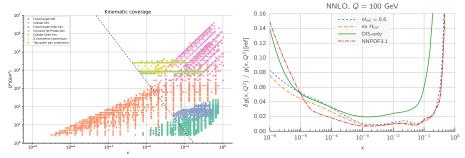


The global fit in greater detail

We have full resummation for DGLAP evolution and DIS structure functions, but not hadron-collider observables (yet)

We cut those hadronic data potentially sensitive to small-x resummation, i.e.

$$lpha_s(Q^2)\lograc{1}{x}>H_{ ext{cut}}=0.6$$
 (default cut)

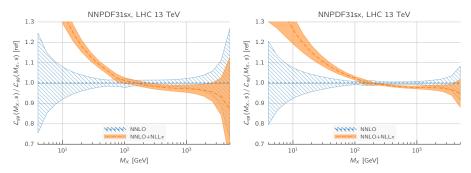


The most important missing observable is Drell-Yan Work in progress to include it in HELL with the new formalism

PDF uncertainties are anyway competitive with those of a fully global fit!

Impact at the LHC

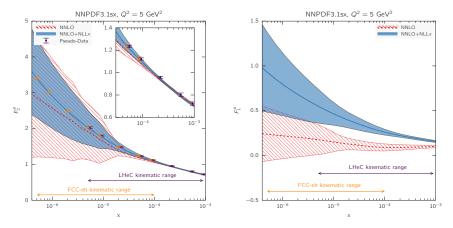
Parton luminosities (gg and qg)



Significant impact for $M_X \lesssim 100$ GeV, but also non-negligible impact above.

Small-x resummed phenomenology at the LHC is now starting....

LHeC and FCC-eh



Prediction in the LHeC and FCC-eh kinematic regions for F_2 and F_L Uncertainties are large (extrapolation region)

Pseudo data show a small error — significant constraining power!

Conclusions

What's new:

- public HELL code implements small-x resummation with many improvements
- NNLO+NLLx results now available
- DIS-only and global PDF fits performed with NNPDF3.1 methodology/setting
- theorywise, NNLO+NLLx fit is the best PDF fit ever (limited by reduced dataset)
- sizeable impact relevant for future collider phenomenology

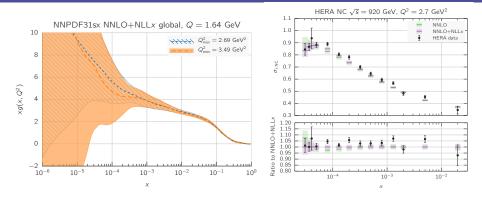
Key Message: At small x we need small-x resummation, and with small-x resummation we can successfully describe the small-x region

Outlook:

- resum Drell-Yan and update the global resummed fits
- phenomenological applications (LHC, FCC, ultra high energy astrophysics, ...)

Backup slides

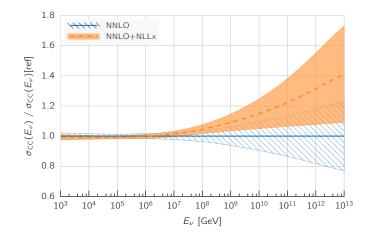
The small- Q^2 HERA bin



Including the $Q^2 = 2.7 \text{ GeV}^2$ bin reduces the uncertainty on the small-x gluon, and does not deteriorate the fit quality — we perfectly describe those data

Ultra high energy astrophysics

UHE neutrino cross section, relevant for IceCube and KM3NET experiments



Sizeable impact, though uncertainties still large

Small-*x* resummation: brief overview

DGLAP:

$$\mu^{2} \frac{d}{d\mu^{2}} f(x,\mu^{2}) = \int \frac{dz}{z} P\left(\frac{x}{z}, \alpha_{s}(\mu^{2})\right) f(z,\mu^{2})$$
BFKL:

$$x \frac{d}{dx} f(x,\mu^{2}) = \int \frac{d\nu^{2}}{\nu^{2}} K\left(x, \frac{\mu^{2}}{\nu^{2}}, \alpha_{s}(\cdot)\right) f(x,\nu^{2})$$

double Mellin transform $f(N, M) = \int dx \, x^N \int \frac{d\mu^2}{\mu^2} \left(\frac{\mu^2}{\mu_0^2}\right)^{-M} f(x, \mu^2)$

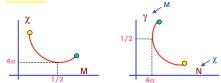
DGLAP:
$$Mf(N,M) = \gamma(N,\alpha_s(\cdot))f(N,M) + \text{boundary}$$
BFKL : $Nf(N,M) = \chi(M,\alpha_s(\cdot))f(N,M) + \text{boundary}$

When both are valid (small x, large μ^2), consistency between the solutions gives (at fixed coupling)

$$\chi(\gamma(N, \alpha_s), \alpha_s) = I$$

duality relation

For $\chi(M, \alpha_s) = \alpha_s \chi_0(M)$ the dual γ contains all orders in α_s/N



Small-x resummation: brief overview

What do we get?

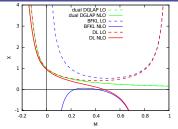
- LL: strong growth at small x (not observed)
- NLL: no enhancement at small x (!!)

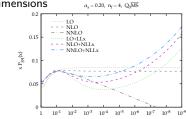
Totally unstable,

due to perturbative instability of the BFKL kernel

ABF solution [Altarelli,Ball,Forte 1995,...,2008]

- use duality to resum BFKL kernel
- exploit symmetry M
 ightarrow 1-M of χ
- impose momentum conservation





reuse duality to get resummed anomalous dimensions

The result is perturbatively stable!

Finally

 resum running coupling contributions (changes the nature of the small-N singularity: branch-cut to pole)

Resummation in the evolution: small x

Singlet:

$$P(x, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[\sum_{k=0}^n a_{nk} \frac{\log^k x}{x} + \sum_{k=0}^{2n} b_{nk} \log^k x + \dots \right]$$
$$\gamma(N, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[\sum_{k=0}^n \frac{a_{nk}}{(N-1)^{k+1}} + \sum_{k=0}^{2n} \frac{b_{nk}}{N^{k+1}} + \dots \right]$$

Single log enhancement at leading small x, in the singlet sector

$$P_{\text{singlet}} = \left(\begin{array}{cc} P_{gg} & P_{gq} \\ P_{qg} & P_{qq} \end{array}\right) = \left(\begin{array}{cc} \text{LL} & \text{LL} \\ \text{NLL} & \text{NLL} \end{array}\right)$$

Non-singlet:

$$P(x, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[\sum_{k=0}^{2n} b_{nk} \log^k x + \dots \right]$$

is double log enhanced but subleading.

High-energy (k_T) factorization:

$$\sigma \sim \int \frac{dz}{z} \int d^2 \mathbf{k} \ \hat{\sigma}_g \left(\frac{x}{z}, \frac{Q^2}{k^2}, \alpha_s(Q^2) \right) \mathcal{F}_g(z, \mathbf{k}) \qquad \begin{cases} \mathcal{F}_g(x, \mathbf{k}) : \text{unintegrated PDF} \\ \hat{\sigma}_g \left(z, \frac{Q^2}{k^2}, \alpha_s \right) : \text{off-shell xs} \end{cases}$$

Collinear factorization

$$\sigma \sim \int \frac{dz}{z} \ C_g \Big(\frac{x}{z}, \alpha_s(Q^2) \Big) \ f_g(z, Q^2) \qquad \begin{cases} f_g(x, Q^2) : \text{standard PDF} \\ C_g(z, \alpha_s) : \text{on-shell coefficient function} \end{cases}$$

Defining

$$\mathcal{F}_g(N, \boldsymbol{k}) = U\left(N, \frac{\boldsymbol{k}^2}{Q^2}\right) f_g(N, Q^2)$$

we get

[MB, Marzani, Peraro 1607.02153]

$$C_g(N,\alpha_s) = \int d^2 \boldsymbol{k} \ \hat{\sigma}_g\left(N, \frac{Q^2}{\boldsymbol{k}^2}, \alpha_s\right) U\left(N, \frac{\boldsymbol{k}^2}{Q^2}\right)$$

At LLx accuracy, U has a simple form, in terms of small-x resummed anom dim γ

$$U\left(N,\frac{k^2}{Q^2}\right) \approx k^2 \frac{d}{dk^2} \exp \int_{Q^2}^{k^2} \frac{d\nu^2}{\nu^2} \gamma(N,\alpha_s(\nu^2))$$

- Only known at LLx
- Just uses the off-shell cross sections $\hat{\sigma}(N,Q^2/k^2,\alpha_s)$ (one for each process)
- Formally equivalent to ABF (practically easier and numerically stabler)