Electroweak Physics at LHeC & FCC-eh

Comprendre le monde, construire l'avenir

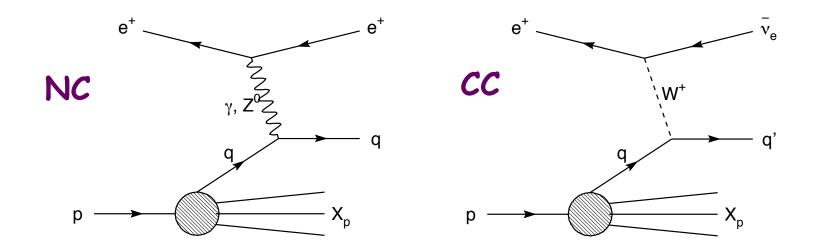
Zhiqing ZHANG with inputs from D. Britzger & M. Klein

Outline

Introduction
Selected examples
Summary

Introduction

EW physics is an important part of the LHeC/FCC-eh physics program


LHeC/FCC-eh can significantly enrich the physics program of an e+e- and/or a pp collider

□ HERA is a good example for some of the EW measurements

□ LHeC/FCC-eh can however overcome all weak points of HERA:

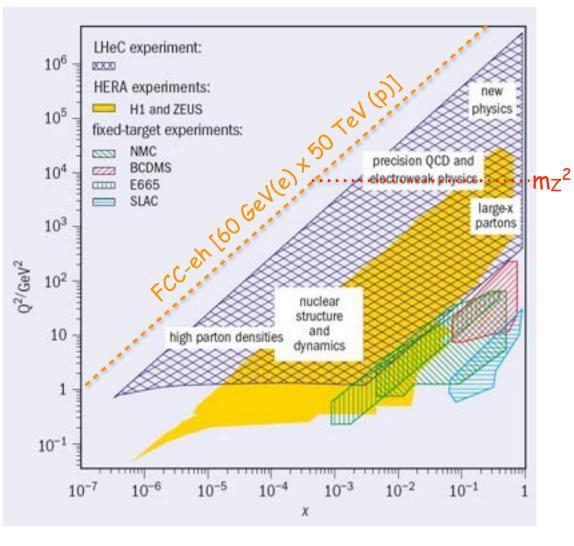
- ► Small EW phase space
- Small cross section
- ► Low luminosity

Neutral and Charged Current Processes

> Dominant hard processes at ep colliders

> Event kinematics:

 $Q^2 = -q^2$: Boson virtuality

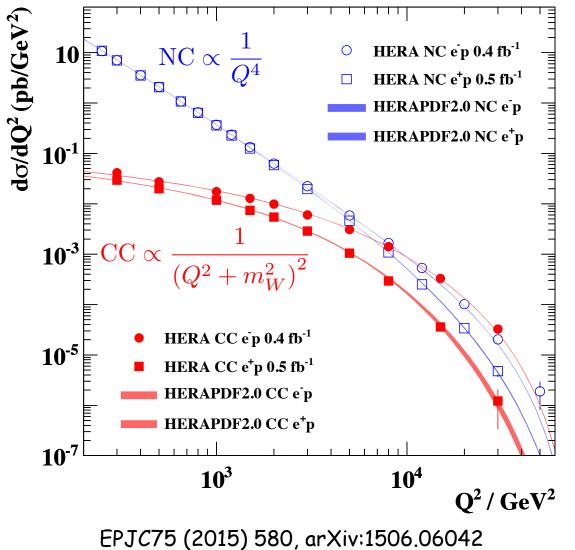

x: momentum fraction of struck parton $y=Q^2/sx$: inelasticity

can be precisely determined (for NC in particular using different methods)

Kinematic Coverage of HERA, LHeC and FCC-eh

Modified from

Klein-Newman, CERN Cour. 49N3 (2009) 22


HERA barely reached pure EW regime + low cross sections (next slide) & low luminosity

LHeC has a big EW phase
 space +
 > 10² increase in lumi

FCC-eh has further extension

Q² Dependence of NC and CC Cross Sections

One HERA legacy plot shows that NC and CC cross sections at high Q² are tiny

- → HERA (EW) data were statistically limited
- → Need much higher luminosity for precision EW measurements

Simulated Data Samples

Simulated NC and CC cross sections

Pseudo-data applicable for both EW and QCD studies

Correlated and uncorrelated syst. and stat. errors

Numerical treatment of errors [PHE-1990-02, Blümlein-Klein]

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E'_e/E'_e$	0.1 %
scattered electron polar angle	$0.1\mathrm{mrad}$
hadronic energy scale $\Delta E_h/E_h$	0.5%
calorimeter noise (only $y < 0.01$)	1-3~%
radiative corrections	0.5%
photoproduction background (only $y > 0.5$)	1%
global efficiency error	0.7%

Assumptions gauged with H1 (best achieved values)

- > Total cross section errors typically: 0.8% at low-x and 2% at high-x
- Simulated data have full syst. error
- ► Luminosity measurement ~1% (0.5% may be reachable)

Updated MC Samples

FCC-eh (LHeC)

	NC/CC	E_e [GeV]	E_p [TeV]	P(e)	charge	lumi. $[fb^{-1}]$
	NC	60~(60)	50(7)	-0.8	-1	1000
e-L	$\mathbf{C}\mathbf{C}$	$60 \ (60)$	50(7)	-0.8	-1	1000
e-R	NC	60~(60)	50(7)	+0.8	-1	300
	$\mathbf{C}\mathbf{C}$	60(60)	50(7)	+0.8	-1	300
	NC	60~(60)	50(7)	0	+1	100
e+	$\mathbf{C}\mathbf{C}$	60~(60)	50(7)	0	+1	100
. I	NC	20~(60)	7(1)	0	-1	100
e-low E	$\mathbf{C}\mathbf{C}$	20~(60)	7(1)	0	-1	100

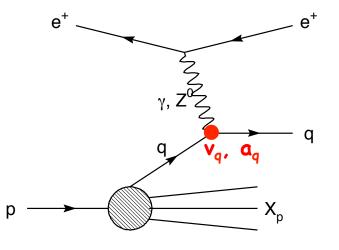
* second and third columns show FCC-eh (LHeC)

(M.Klein)

error assumptions:

elec. scale: 0.1%; hadr. scale 0.5% radcor: 0.3%; γp at high y: 1% uncorrelated extra eff. 0.5%

Light Quark Couplings v_q, a_q to Z Boson


v_q, a_q treated as free EW parameters

Perform combined EW + PDF fit to inclusive NC and CC cross section "data"

➤ to take into account EW/PDF correlation

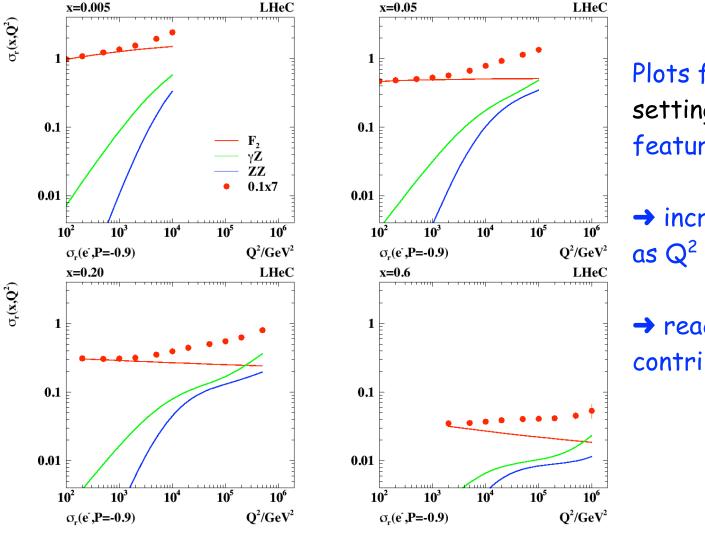
PDF parameterisation a la HERAPDF

EW calculations performed in on-mass shell scheme: (a_{em}, m_Z, m_W) + Δr with Δr=Δr(a_{em}, m_W, m_Z, m_t, m_H, ...)

Cross Sections, Structure Functions, Couplings

Klein and Riemann, Electroweak interactions probing the nucleon structure, Z. Phys.C 24 (1984) 151.
$$\frac{d^2 \sigma_{\rm NC}^{\pm}}{dx dQ^2} \sim Y_+ \tilde{F}_2 \mp Y_- \tilde{F}_3 - y^2 \tilde{F}_L \qquad {\rm with} \quad Y_\pm = 1 \pm (1-y)^2$$

$$\begin{split} & \begin{array}{ll} & \gamma \text{ exchange} & \gamma \text{Z interference} & \text{Z exchange} \\ & \tilde{F}_2 = F_2 - (v_e - P_e a_e) \kappa_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 - 2P_e v_e a_e) \kappa_Z^2 F_2^Z \\ & v_e \sim 0, \Rightarrow \text{ some of the terms are negligible} \\ & x \tilde{F}_3 = -(a_e - P_e v_e) \kappa_Z x F_3^{\gamma Z} + \left[2 v_e a_e - P_e (v_e^2 + a_e^2) \right] \kappa_Z^2 x F_3^Z \\ & \left[F_2, F_2^{\gamma Z}, F_2^Z \right] = x \sum_q \left[e_q^2, 2e_q v_q, v_q^2 + a_q^2 \right] \left\{ q + \bar{q} \right\} & \kappa_Z^{-1} = \frac{2\sqrt{2}\pi\alpha}{G_F M_Z^2} \frac{Q^2 + M_Z^2}{Q^2} \\ & \left[x F_3^{\gamma Z}, x F_3^Z \right] = 2x \sum_q \left[e_q a_q, v_q a_q \right] \left\{ q - \bar{q} \right\} & \begin{array}{l} \text{Structure function formulae} \\ & \text{given for ep scattering,} \\ & \text{for e^+p, P_e \Rightarrow -P_e} \\ \end{array} \end{split}$$


CC cross sections have similar but different structure functions and PDF combinations

LHeC & FCC-eh 2017, CERN, Sept 11-13, 2017

Zhiqing Zhang (LAL, Orsay)

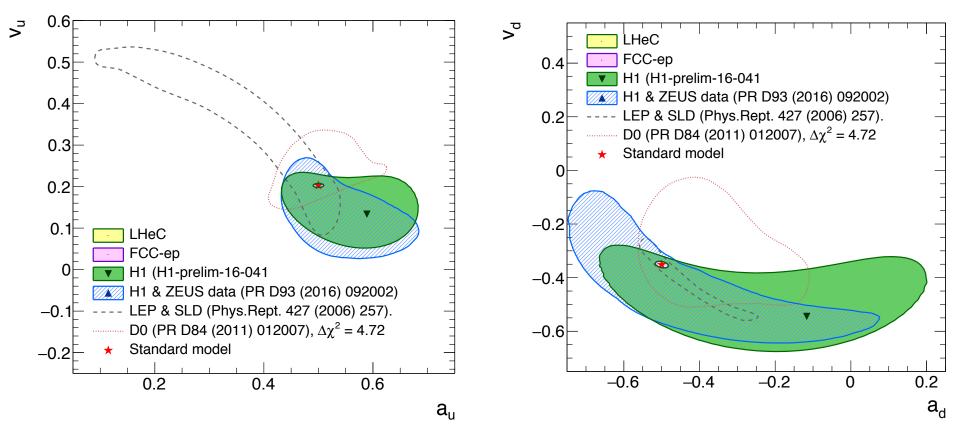
 $F_L=0$ in LO parton model, $F_L\sim g$ at NLO

Relative Contributions of Different Terms

Plots from CDR (old settings/samples) but features remain valid:

→ increasing EW effects as Q² increases

reach/exceed photonic contributions


LHeC CDR: J. Phys. G39 (2012) 075001, arXiv:1206.2913

Zhiqing Zhang (LAL, Orsay)

Results

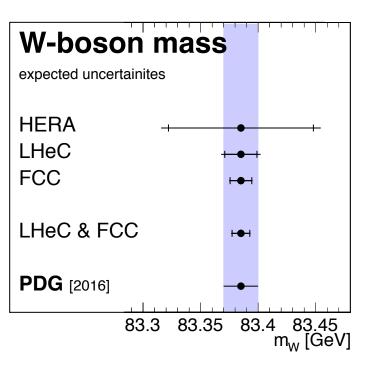
d quark couplings

Huge improvement in precision over LEP, Tevatron and HERA measurements

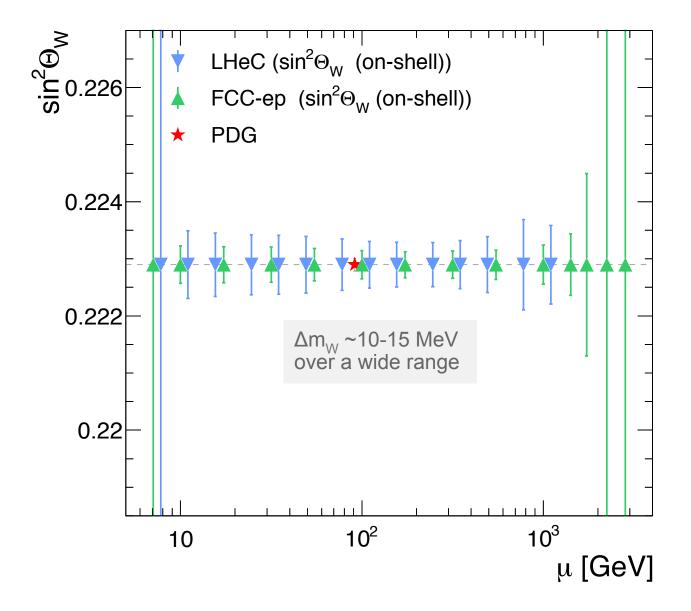
- > Data with highly polarised lepton beam have a big impact
- > yZ terms help to resolve the sign ambiguity presented in LEP data

Zhiqing Zhang (LAL, Orsay)

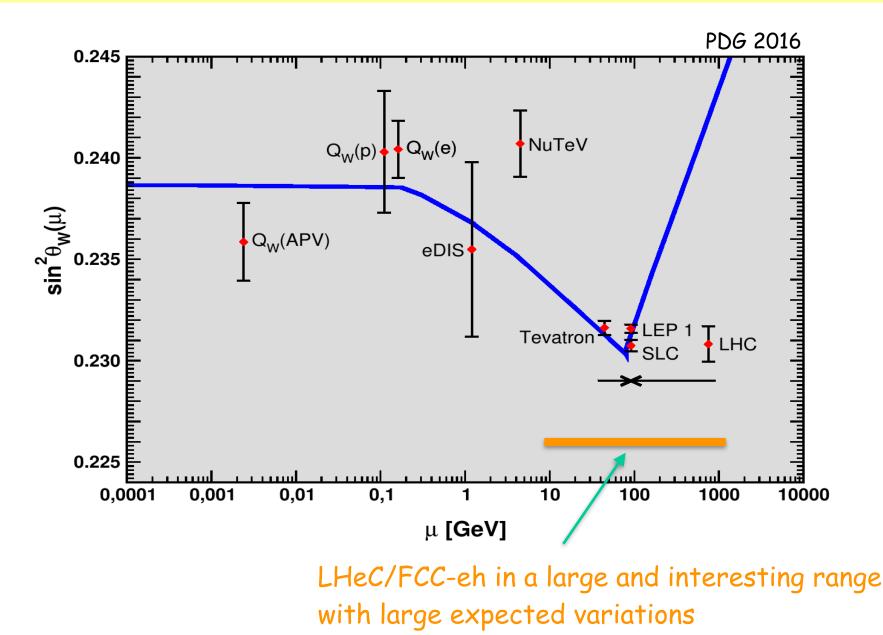
W Boson Mass and Weak Mixing Angle


□ In on-mass shell scheme, a_{em}, m_Z, and m_W are the main free parameters

► a_{em} and m_z are precisely known/measured


- ► Treat m_W as free parameter
 - HERA $\pm 63_{(exp)}29_{(PDF)}$ LHeC $\pm 14_{(exp)}10_{(PDF)}$
 - FCC $\pm 9_{(exp)}4_{(PDF)}$

The weak mixing angle can be derived:


$$\sin^2 \theta_W$$
(on-mass-shell) = $1 - \frac{M_W^2(\text{fit})}{M_Z^2(\text{input})}$

Results at Different Scales ($Q^2 \rightarrow \mu$)

Convert to MS Scheme to Check Scale Dependance

LHeC & FCC-eh 2017, CERN, Sept 11-13, 2017

Zhiqing Zhang (LAL, Orsay)

Summary and Conclusion

Selected EW expectations show the potential of the LHeC/FCC-eh

- unprecedented precision on light quark couplings to Z boson
- competitive W mass determination
- weak mixing angle extraction over a large energy range

Results based on simulated data samples with likely conservative uncertainties

Only real data can

- > tell if there are deviations from the SM expectations
- allow joint exploration of EW measurements with precision QCD and BSM physics