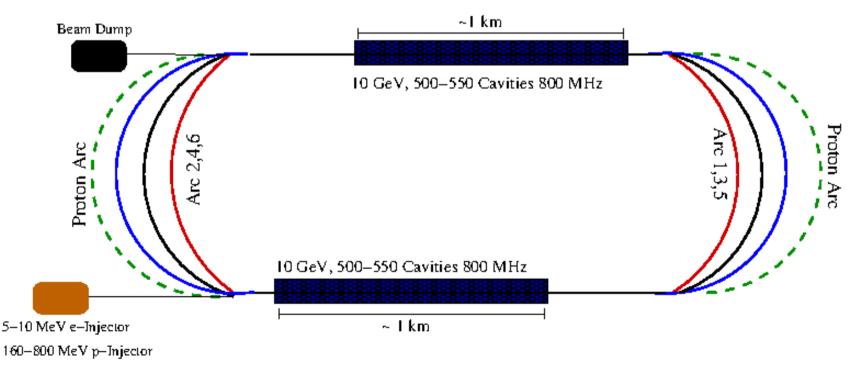


e-ERL as Injector for hh (Barely good for a coffee discussion)

R. Calaga, CERNLHeC/FCC-eh Workshop, Sep 11-13, 2017Ack: I. Ben-Zvi, O. Bruning, E. Jensen, E. Shaposhnikova for encouraging discussions

FCC -eh, ERL option



Basic unit: 5-cell cavity into 4-cavity module

e-ERL for Proton Injection

Recall: "SPL+PS2" as a new high brightness injector was already considered and abandoned for LHC

Proposal to use a single <u>recirculating linac</u> to directly inject to SPS (26 GeV) or SPS+ (\sim 50 GeV), especially for 5ns bunch spacing.

** Production of the proton bunches (5-25 ns bunches) is ignored here

Why should we care

The 5ns bunch spacing as a means for reduced pile-up

FCC parameters for 5ns <u>very difficult</u> with present injectors (use linac)¹

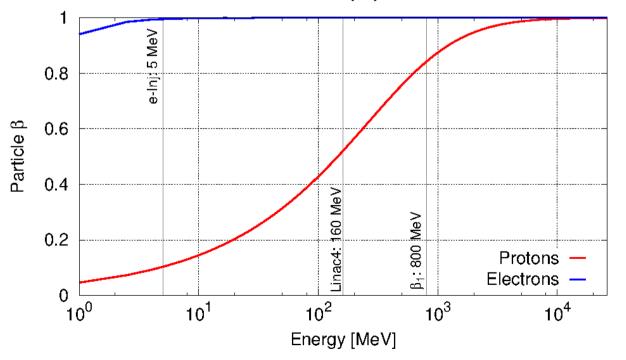
	LHC/HL	FCC-hh	FCC-hh	FCC-eh
Energy [TeV]	7	50	50	0.06
Bunch Spacing [ns]	25	25	5	5-25
Current, DC [A]	0.55-1.1	0.51	0.51	0.04
Bunch Intensity [1011]	1.1-2.2	1.0	0.2	0.01
σ_z [cm]	7.55-9.0	8.0	8.0	7
ε _{xy} [μm]	2.5	2.2	0.4	50
Frequency [MHz]	400.79			801.58

¹E. Shaposhnikova et al, FCC Berlin

eh-ERL for Proton Injection

Do we need really it, No

1. A "26 GeV" linac could provide a cleaner¹ way to make 5ns bunch spacing into SPS 2. A 2^{nd} pass to recirculate the protons provides flexibility on the injection energy to the SPS(+), say up to 50 GeV

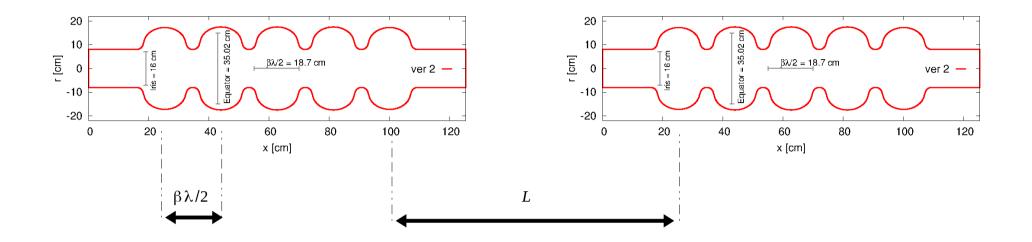

****** This contribution is only to motivate the idea w/o detailed studies that are required to validate the feasibility ******

If feasible, fill Protons in RL-mode + run Electrons for eh collisions in ERL-mode

Can It Work

At energy < 800 MeV, the rapid change in particle β implies a "pre-injector", for example Linac4+ for single shot injection into p-RL (intensity/bunch ~ x10 more)

A pre-injector is useful for e-ERL for the reason of ER of spent beam below 1 GeV (?).

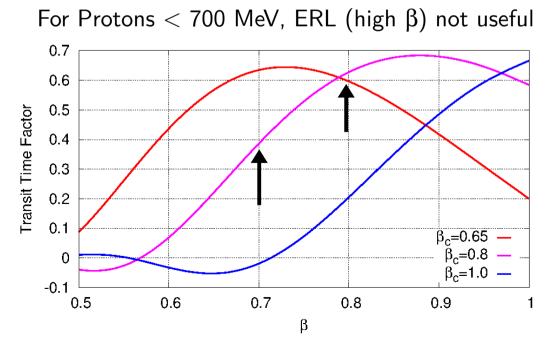


		Linac4	SPL inject.
		phase I	phase II
length	[m]	80	88
beam energy	[MeV]	160	180
beam power	[kW]	5.1	205
bunch frequency	[MHz]	352.2	352.2
repetition rate	[Hz]	2	50
source current	[mA]	80	80
av. bunch current	[mA]	40	40
chopper beam on	[%]	62	62
beam pulse length	[ms]	0.4	0.57
narticles ner nulse	[1014]	1.0	1.42
particles per bunch	[10 ⁹]	1.14	1.14
tr. rms emittance	[mm mrad]	0.36	0.36
long. rms emittance	[deg MeV]	0.19	0.19

Table 1: main parameters of Linac4

Garoby, EPAC06

802 MHz, 5-Cell Cavity As Example



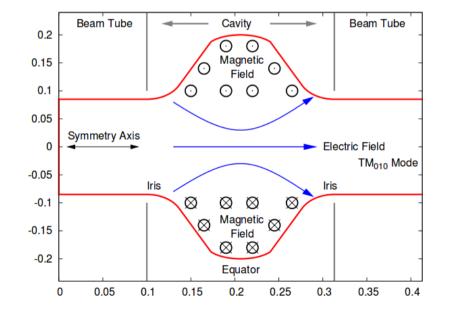
Energy Gain:

$$\Delta E = q \cdot V_0 \cdot T(\beta) \cdot \cos \phi_s$$

Optimum transition energy and βc in the low energy part is essential

One possibility is to use 2-cell cavity or 0-mode in low energy part

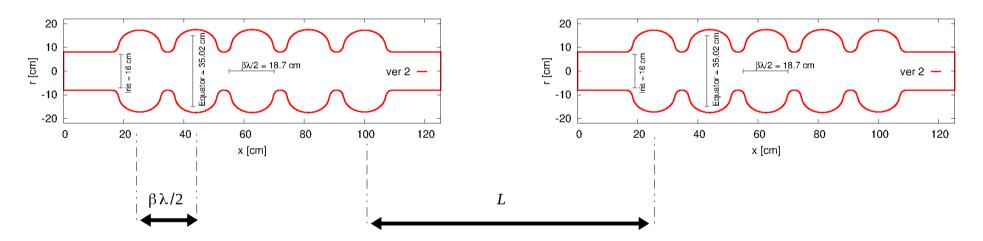
802 MHz, 5-Cell Cavity As Example


Longitudinal focusing (stable phase) & optimum ramping along the first section very important.

Transverse focusing especially at the low energy is critical to maintain the low emittance (0.4 μ m) for protons through out the p-RL

RF transverse de-focusing:

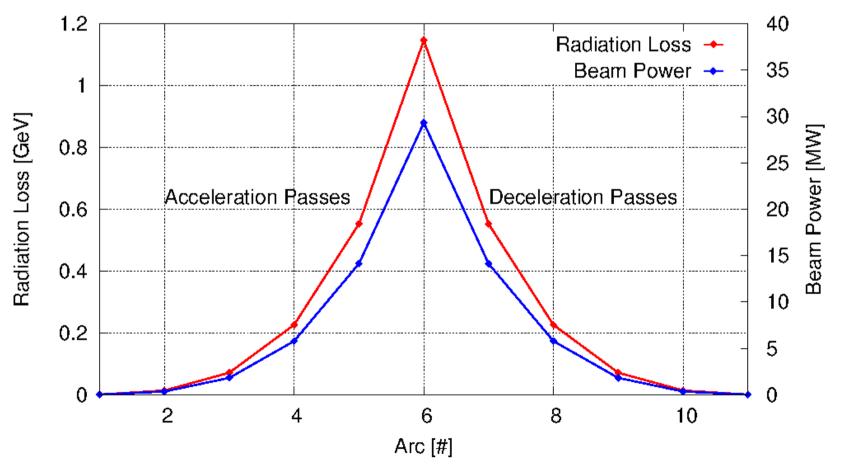
$$\Delta p_r \propto \frac{1}{\lambda(\beta \gamma)^2}$$


Space charge forces are also $1/\gamma^2$

Second Pass, Protons

Distance between cavities is fixed, optimized for e-ERL where the phase-slip in multiple passes is zero.

For protons, optimum length for the first 10 GeV linac is 10-20% shorter. So relative phase between cavities is adjusted.


However, round trip time is ~30 μ s, so change in RF phase between passes is not feasible ($\tau_{cav} \sim 8ms$). Is it possible with return arc tuning + fast cavity tuning¹ using piezo's/ferro-electric materials

¹ also in discussions with I. Ben-Zvi, F. Gerigk

RF Power, e-ERL

Energy recovery after total 6 passes: 95.2 %

Sync radiation loss: 2.88 GeV (44-73.6 MW accumulated beam power⁺) Assuming ~1000 cavities (20 MV/cavity) – 44-74 kW RF power/cavity Some extra power for transient (Microphonics, LFD...)

⁺30 MW can be saved if 60 GeV beam Is not bent

RF Power, p-RL

SPS macro-pulse example:

300 bunches x $10^{\scriptscriptstyle 11}~p/b = 0.3 x 10^{\scriptscriptstyle 14}~p/pulse$

- Or the 5ns equivalent $(0.2 \times 10^{11} \text{ p/b})$
- RF pulse flattop \sim 20 μs ($\tau_{_{cav}}\sim$ 8ms)

Final Energy: 26 GeV (upto 50 GeV) (25 ns x 72 + 8e) x 4 batches = 8 μs
Total Beam Power: 5.8 MW using 10 Hz rep.rate
Consider 25% overhead: 7.3 MW (for transients)

Per Cavity: Assume 50 kW-CW maximum (maybe x2 more) We can assume up to 200 kW/pulsed < 1% duty cycle (MBT¹) The RF power in pulsed mode maybe a limitation

¹E. Montesinos

Some Remarks

RL as an injector to provide 5-25 ns spacing for protons A proton-RL seems feasible within the scope of e-ERL specs e-ERL at ~20 MV/cavity (RF loss limited), p-RL @25MV/cavity For energy > 26 GeV, second pass required

Challenges

Efficiency in the low energy part requires detailed look, a pre-injector \sim 700-800 MeV keeping big linac constant The choice of Q_L for electron & protons + RF power maybe an important limitation (has to be studied)

Second RL pass

If a higher injection is desired for SPS+. Tuning of the return arc can + "cavity re-phasing"