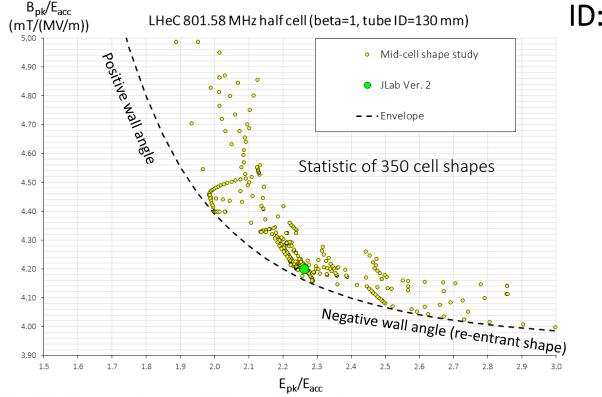


Fabrication Status of the first 802 MHz Prototype Cavities for PERLE

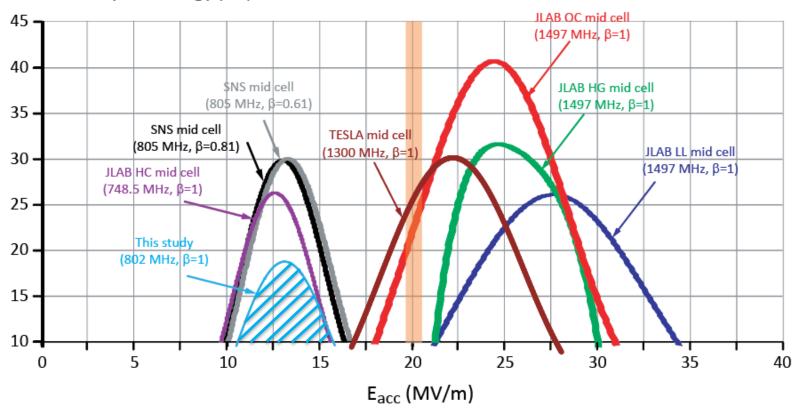
F. Marhauser LHeC Workshop CERN 11-13 September 2017

Overview


- Jefferson Lab has a contract with CERN to build
 - One single-cell fine-grain niobium 802 MHz cavity (manufactured)
 - Two single-cell OFHC 802 MHz cavities
 - One 5-cell fine-grain 802 MHz cavity
 - The remaining cavities are advancing rapidly
- In addition, Jefferson Lab has looked into:
 - Higher Order Mode (HOM) coupler design
 - Cryomodule design
 - This design work is preliminary
 - Funding is required to make more progress

Surface Peak Fields

- At $E_{acc} = 20 \text{ MV/m} \rightarrow B_{pk} \sim 84 \text{ mT} (B_{pk}/E_{acc} \sim 4.2 \text{ mT/(MV/m)})$
 - Avoids potential Q₀-slope
- Risk at 20 MV/m is field emission, small E_{pk}/E_{acc} can become important
- Main parameter to minimize peak field ratios is cavity iris diameter (ID) \rightarrow small ID
- However, if ID is too small, HOM-damping can be compromised


ID: 130 mm (fixed)

Typical Cell Multipacting Barrier

• Flatter equator in JLab's design lowers secondary impact energy

electron impact energy (eV)

Frank Marhauser

Parameter Table for Cavity Versions

Parameter	Unit	Value	Value	Value		
Cavity type		JLab/PERLE CERN Ver.		CERN Ver. 2		
Frequency	801.58					
Number of cells		5				
L _{active}	mm	917.9 935		935		
Long. loss factor (2 mm rms bunch length)	V/pC	2.742 2.894		2.626		
$R/Q = V_{eff}^2/(\omega^*W)$	Ω	523.9	430	393		
R/Q/cell	Ω	104.7	86.0	78.6		
G	Ω	274.6	276	283		
R/Q·G/cell		28788	23736	22244		
Eq. Diameter	mm	328.0	350.2	350.2		
Iris Diameter	mm	130	150	160		
Tube Diameter	mm	130 150		160		
Eq./Iris ratio		2.52	2.19	2.19		
Wall angle (mid-cell)	degree	0	12.5	12.5		
E _{peak} /E _{acc} (mid-cell)		2.26	2.26	2.40		
B _{peak} /E _{acc} (mid-cell)	mT/(MV/m)	4.20	4.77	4.92		
k _{cc}	%	3.21	4.47	5.75		
N^2/k_{cc}		7.78	5.59	4.35		
cutoff TE ₁₁	GHz	1.35	1.17	1.10		
cutoff TM ₀₁	GHz	1.77 1.53		1.43		

LHeC and FCC-eh Workshop CERN 11-13 September 2017 Frank Marhauser

Deliverables (based on SOW with CERN)

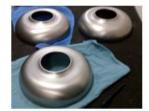
- First 802 MHz Niobium single-cell cavity has been completed at JLab, the cavity is now being postprocessed prior to vertical RF testing
- 2 copper 802 MHz cavities will be produced for R&D purposes and will be sent to CERN

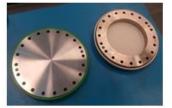
One bare Niobium five-cell 802 MHz design is being fabricated, completion expected by end of Sept. 2017

Frank Marhauser

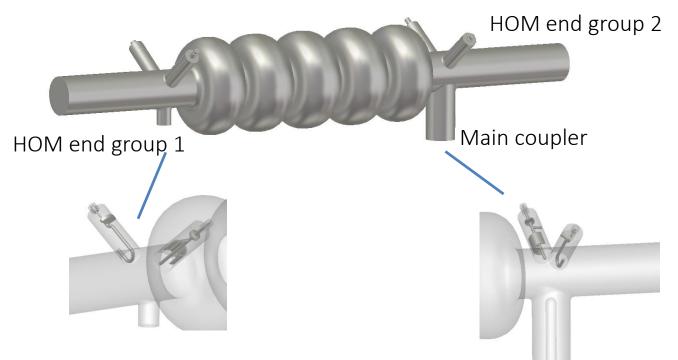
Status of Deliverables

Cavity	Qty.	Material	Half cells deep- drawn	Beam Tubes deep-drawn/ rolled	Flanges machined	End group EBW (end cell + tube + flange)	Dumb- bells EBW	Machining/ Trimming	Cavity EBW
1-cell	1	FG Nb	2/2	2/2	2/2 NbTi flanges	2/2	n/a	done	done
1-cell	2	OFHC Cu	4/4	4/4 not EB-welded and machined	4/4 SS 316 LN	not yet started	n/a	equator trimming after EBW	-
5-cell	1	FG Nb	10/10	2/2	2/2 NbTi flanges	2/2	4/4	in progress	-





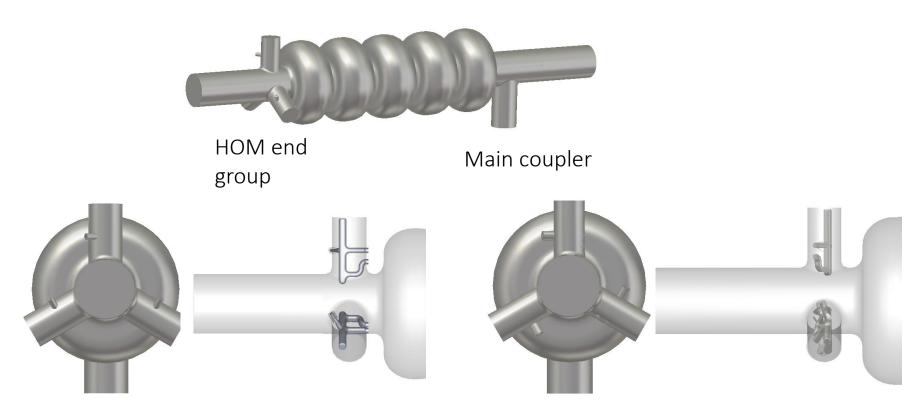
Frank Marhauser



LHeC and FCC-eh Workshop CERN 11-13 September 2017

Which HOM-Coupler Technology ?

- First approach should be to utilize existing coupler technology, but this needs scaling to new frequency and tube ID
- For instance: scale LHC HOM couplers (and FPC)

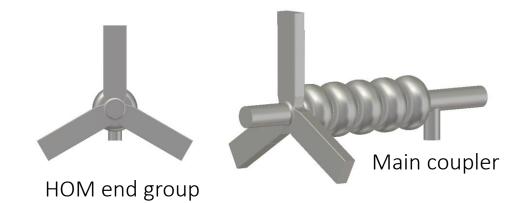

- 4 HOM couplers per cavity ?
 - LHC-type coaxial loop coupler is narrowband coupler for dipole modes
 - LHC-type coaxial antenna/capacitive coupler is more broadband

Frank Marhauser

Which HOM-Coupler Technology ?

- A better solution would be utilizing 3 couplers for HOM end group
- Minimizes dependence on mode polarization

Scaled JLab-type couplers


Scaled TESLA-type coaxial couplers

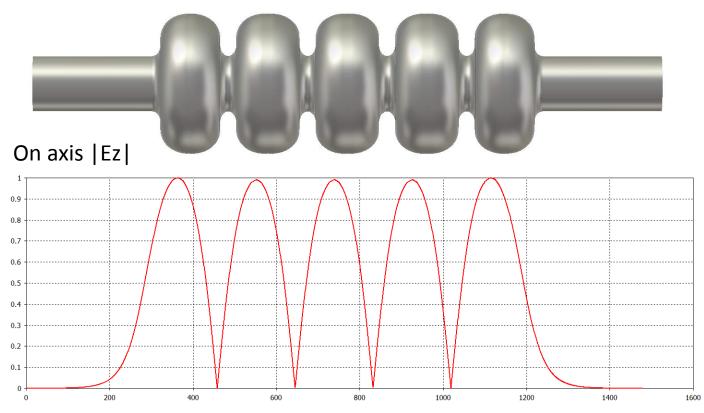
Frank Marhauser

Which HOM-Coupler Technology ?

• HOM waveguides only required if beam current increases significantly

Scaled JLab High Current (HC) waveguide couplers

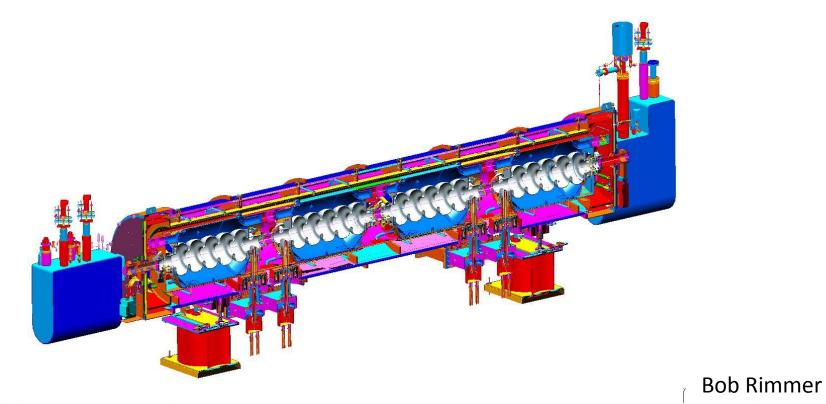
1.5 GHz HC cavity prototype


750 MHz HC cavity prototype

Frank Marhauser

JLab/PERLE

- For the prototype PERLE cavity we have chosen a single-die design (end cells are trimmed shorter)
- PERLE cavity identical to CERN FCC prototype under construction
- Optimized for high current operation



Frank Marhauser

SNS-like cryomodule

- Cavity fits well in SNS type (805 MHz) cryomodule
- Cost and fabrication processes well understood
- Some updates for pressure code have been made by ORNL
- Plans prepared to build new modules for SNS Power Upgrade
- Fresh cost estimate in hand, can be adapted to PERLE

Summary

- CERN FCC cavity prototypes are progressing well
 - Expected completion in September 2017
 - Cutting off the beam tubes from the bare 5-cell cavity and welding new end groups to the cavity to investigate HOM-damping scenarios would be a good next step
- Preliminary evaluation of HOM's has been carried out
 - Either coax or waveguide would work (waveguide is probably overkill)
 - Three couplers should be sufficient (needs to be checked)
 - Strong cell-to-cell coupling is good for HOM damping
- Design for PERLE cavity is identical to CERN FCC cavity
 - Ready for detailed end group design work
 - Prototype cavity could be built 6 months after funding becomes available if CERN 5-cell prototype cavity is modified
 - One year would be required starting from scratch
- Jefferson Lab will provide a budgetary estimate for an SNS-type cryomodule for PERLE

