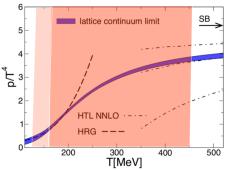
LHCb Heavy-ion results

Michael Winn

Laboratoire de l'Accélérateur Linéaire, Orsay



Étretat, 09.10.2017

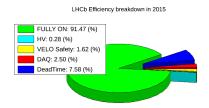
Outline

- Introduction
- ▶ PbPb plans
- pPb results and plans
- Conclusions

QGP physics at the LHC

HRG: Hadron Resonance Gas

p/T4: pressure over temperature4

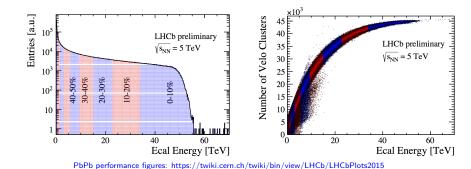

HTL: Hard thermal loop

SB: Stefan-Boltzmann limit of non-interacting quarks and gluons

Trange probed at the LHC according to hydrodynamic models Figure taken from PLB 370 (2014), T-range from PRC 89, 044910 (2 014)

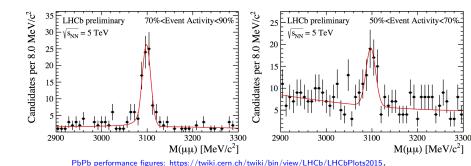
- measure equilibrium properties: deconfinement, chiral restoration, thermodynamic&transport properties
- quantify QCD properties:
 QCD radiation, hadronisation, phase transition characteristics
- understand non-equilibrium dynamics and relation to equilibrium
- \rightarrow What can LHCb contribute in AA and pA collisions?

LHCb in PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV

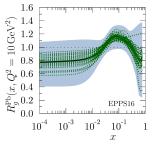


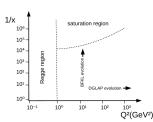
Experiment	2015 PbPb	
ALICE central	150 mio MB evts. (0.02 nb^{-1})	
ALICE muon	$0.225~{ m nb}^{-1}$ analysed	
CMS	$0.464~{ m nb}^{-1}$ analysed	
ATLAS	0.515 nb^{-1} analysed	
LHCb	50 mio MB evts., 50-100% tracking	

modified version in arXiv:1609.01135, references therein.


- ▶ 2015 first data taking in most challenging environment for LHCb
- competitive data sample for soft probes and charm in terms of event statistics in unique acceptance
- very soft trigger requirement:
 - → combined with LHCb PID capability: unique sample at the LHC!

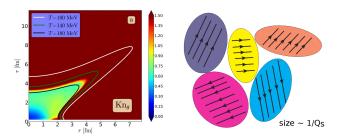
LHCb in PbPb collisions: centrality reach


- designed for low pile-up pp collisions: running in pp at $\mu pprox 1$
- occupancy limitation in PbPb collisions: current tracking algorithms up to 50% in centrality

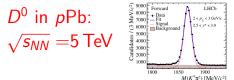

LHCb in PbPb collisions: J/ψ signal

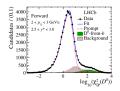
- clear signal up to edge of occupancy limit thanks to similar resolutions as in pp collisions
- data-driven efficiency determinations challenging
- \blacktriangleright prompt J/ ψ analysis as pilot analysis in Pb-Pb will be combined with other analysis for publication

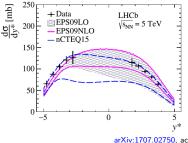
p–nucleus collisions: control & limits of collinear factorisation

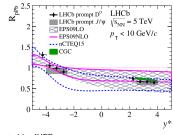


RHS: taken from arXiv:1612.05741, LHS: modified version of graphic in "QCD and collider physics", Ellis, Stirling, Webber

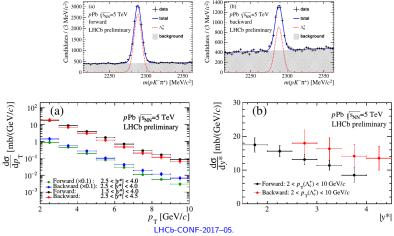

- No HERA equivalent for lepton-nuclei: parton flux unconstrained for LHC heavy-ion low-p_T heavy-qu ark production total charm, beauty production in p-nucleus vital input for AA
- **saturation** scale $Q_s^2 \propto A_{nucleus}^{1/3}
 ightarrow$ linear parton evolution break-down?
- Which framework if collinear factorisation no longer valid? color glass condensate arXiv:1002.0333?
- Are there further effects like energy loss by enhanced small-angle gluon

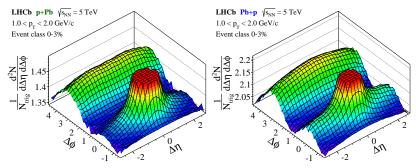

p-nucleus/*pp* high multiplicity events: interesting questions




Left: taken from arXiv:1404.7327 $Kn = L_{micro}/L_{macro}$, already dN/d η =270! Right: taken from arXiv:1611.00329.

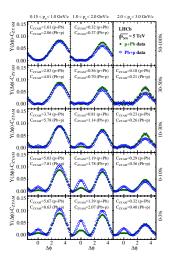
- correlations & bulk production@low-p_T & large multiplicity: 'same' patterns as in PbPb, where sign for locally thermalised system
- hydro in large multiplicity pPb: set-up as in PbPb describing data despite precondition doubts arXiv:1705.03177
- colour class condensate & color reconnections explanations not ruled out arXiv:1607.02496, arXiv:1705.00745
- recently explanation via interference of multi-parton scatterings arXiv: 1708.08241

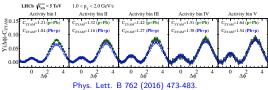



- arXiv:1707.02750, accepted by JHEP. sensitive to gluons down to $x=10^{-6}\,$
- consistency between colour glass condensate and nuclear PDF predictions: to be investigated
- more precise than present nPDF-based calculations: looking forward for global fit and consistency tests with prompt and non-prompt J/ψ -data from LHCb arXiv:1706.07122, accepted by PLB

Λ_C : $\sqrt{s_{NN}} = 5 \text{ TeV}$

- ▶ test of fragmentation in pPb
- ightharpoonup to be complemented with a pp measurement at same $\sqrt{s_{NN}}$ for publication
- see also talk by Yanxi
 QGP France 2017 Michael Winn, LHCb Collaboration

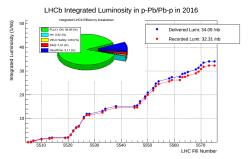

LHCb di-hadron correlations in pPb collisions



Phys. Lett. B 762 (2016) 473-483.

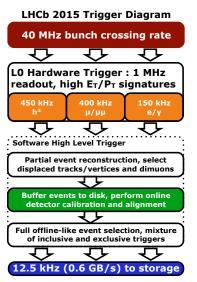
- unique forward acceptance with full tracking
- qualitative agreement with mid-rapidity findings by ALICE, ATLAS and CMS in high multiplicity events
- ightharpoonup significant difference between lead and proton fragmentation side, when comparing same fraction of events based on multiplicity in experimental acceptance $2.0 < \eta < 4.9$

LHCb di-hadron correlations in pPb collisions

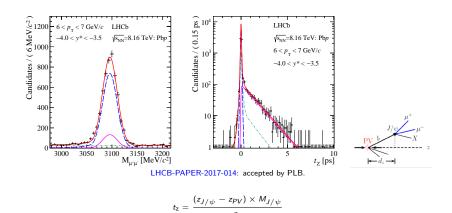


- increase of near-side correlation towards larger multiplicities and lower p_T after pedestal subtraction
- results at forward and backward rapidity at same estimated absolute multiplicity in acceptance: similar results of correlation strength after pedestal subtraction
- looking forward to phenomenological models: kinematics should be favourable for better control in CGC calculations
- pp measurement ongoing

LHCb pPb collisions: 2016 run


request 10 nb⁻¹ per beam direction at 8 TeV: Hadron PID and precision tracking/vertexing down to low- p_T

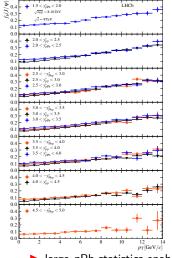
- $\psi(2\mathrm{S})$ precision close to the one of J/ψ in 2013 by 10-40 times higher statistics
- comparison with Drell-Yan
- double charm production and $c\bar{c}(c)$ correlations
- fully reconstructed open beauty and Υ family


 $13.6\pm0.3~{\rm nb}^{-1}$ in $p{\rm Pb}$ $20.8\pm0.5~{\rm nb}^{-1}$ in ${\rm Pb}p$ $\approx10^9$ minimum events in both configurations

2016: pPb trigger set-up, data acquisition and calibration

- offline quality at the software trigger level
- analysis hot off the press with dedicated stream optionally including full event info: TURBO++
- trigger system 'overdesigned' for pPb:
 O(100 kHz) vs. 40 Mhz interaction rate,
 25 ns vs. 200 ns bunch-bunch spacing
- TURBO++ heavily used for pPb: more open cuts than in pp at L0 and HLT1 level
- ▶ 10⁹ minimum bias lines taken with no bias from L0, just require 1 Velo-track at HLT1!

2016 *p*Pb run: prompt/non-prompt J/ ψ : FIRST result!


- ▶ about 0.5 $\cdot 10^6$ J/ ψ candidates in final selection for pPb and Pbp each
- signal extraction with 2-dimensional log-likelihood fit of pseudoproper time and mass

2016 *p*Pb run: J/ψ result uncertainties

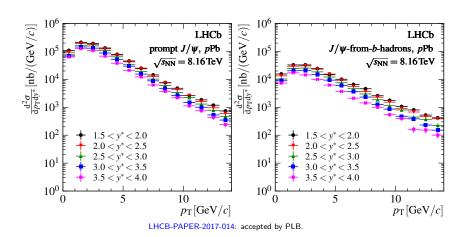
Source	pPb	Pbp	Comment
Signal model	1.3%	1.3%	correlated
Muon identification	2.0% - 11.0%	2.1% - 15.3%	correlated
Tracking	3.0% - 8.0%	5.9% - 26.5%	correlated
Hardware trigger	1.0% - 10.9%	1.0% - 7.4%	correlated
Software trigger	2.0%	2.0%	correlated
Simulation statistics	0.4% - 7.0%	0.4% - 26.2%	uncorrelated
$\mathcal{B}(J/\psi \rightarrow \mu^{+}\mu^{-})$	0.05%	0.05%	correlated
Luminosity	2.6%	2.5%	correlated
Polarisation	_	_	not considered

LHCB-PAPER-2017-014: accepted by PLB.

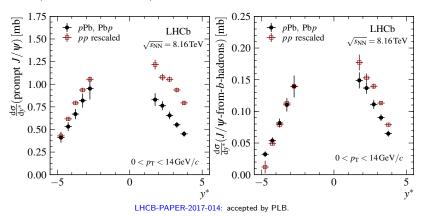
- quoted for double differential results in this table
- pPb for most phase space several sources of similar size
- ▶ dominated by tracking in Pbp: statistical limitation of data-driven correction tables data vs. simulation (worse S/B as in pPb)

$$f_b = \frac{\sigma_{J/\psi - \text{from} - b}}{\sigma_{J/\psi - \text{from} - b} + \sigma_{J/\psi - \text{from} - b}}$$

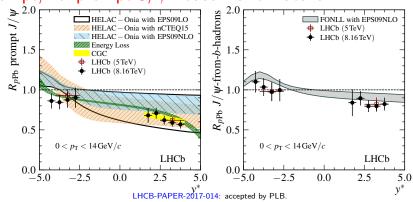
LHCB-PAPER-2017-014: accepted by PLB.

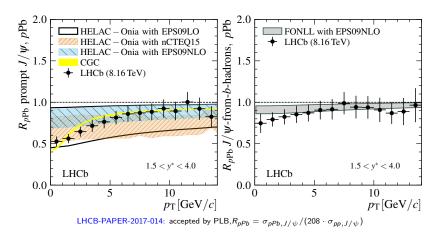

pp@8TeV

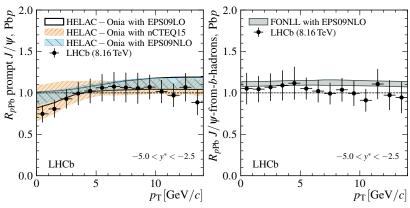
pPb@8.16TeV

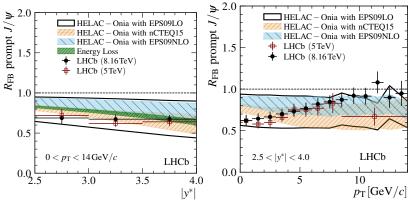

Pbp@8.16TeV

- large pPb statistics enable detailed double-differential comparison between 3 systems
- ▶ different fraction from B hadrons shows already different nuclear modification of prompt and non-prompt component

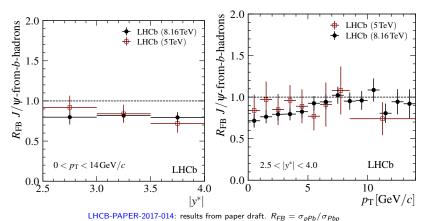

 OGP France 2017 Michael Winn, LHCb Collaboration


precise double differential measurements


- ▶ pp reference cross section from inter- (in energy) and extrapolation (in rapidity) of measurements at $\sqrt{s_{NN}} = 7, 8, 13$ TeV
- ▶ comparison of pPb cross section at $\sqrt{s_{NN}}$ =8.16 TeV and $pp \times 208$ cross section
- ightharpoonup strong modifications for prompt ${\rm J}/\psi$
- modifications smaller for large Q^2 (J/ ψ -from-b-hadrons)


- collinear factorisation with HELAC-Onia arXiv:1610.05282, color glass condensate arXiv:1503.02789, coherent energy loss arXiv:1212.0434
- similar as at 5 TeV: no decision based on data possible
- remarkable that at very backward rapidity rise seen in D-meson data and in nuclear PDF not seen here in prompt and nonprompt ${\rm J}/\psi$
- ▶ for the first time precise B-production measurement in pPb down to $0p_T$: crucial input for PbPb phenomenology

- collinear factorisation with HELAC-Onia arXiv:1610.05282, color glass condensate arXiv:1503.02789, coherent energy loss arXiv:1212.0434
- similar as at 5 TeV: no decision based on data possible
- \blacktriangleright for the first time precise B-production measurement in pPb



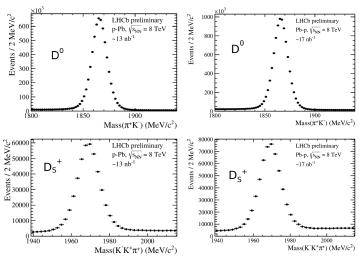
- LHCB-PAPER-2017-014: accepted by PLB, $R_{pPb} = \sigma_{pPb,J/\psi}/(208 \cdot \sigma_{pp,J/\psi})$
- collinear factorisation with HELAC-Onia: arXiv:1610.05282, color glass condensate arXiv:1503.02789, coherent energy loss: arXiv:1212.0434
- similar picture as at 5 TeV: no decision based on data possible with higher granularity and precision
- ightharpoonup for the first time precise B-production measurement in pPb

LHCB-PAPER-2017-014: results from paper draft, $R_{FB} = \sigma_{pPb}/\sigma_{Pbp}$


- forward-backward ratio: more precise, no pp reference involved
- ▶ slight tension with coherent energy loss model and with nuclear PDF

. . 15 pro 15p

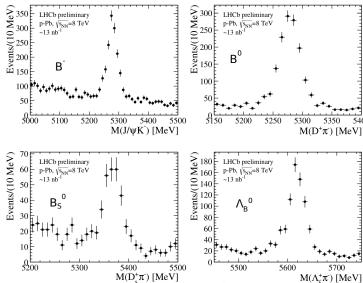
- forward-backward ratio: more precise, no pp reference involved
- unique test of B-production


Investigate break-down of factorisation in nuclear collisions with $\psi(2S)$

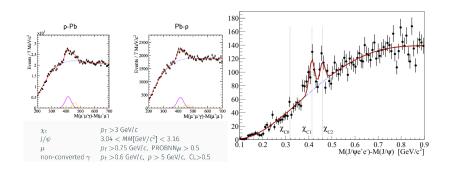
- additional suppression for $\psi(2S)$ not explained by nuclear PDFs nor by coherent energy loss
- 'comover' model with no precisely specified secondary interactionPhys.Lett. B749 (2015) 98-103: additional suppression also with hadron resonance gas + QGP ansatz by Du & Rapp Nucl.Phys. A 943 (2015)
- calculation from gluon-kicks estimated with Color Glass Condensate approach and colour evaporation model can explain the data arXiv:1707.07299
- ► double-differential measurement ongoing at 8 TeV: in preparation


 OGP France 2017 Michael Winn, LHCb Collaboration

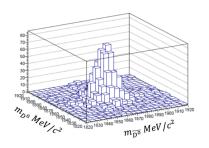
2016 pPb run: open charm

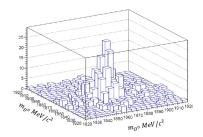

- unique heavy-flavour data samples to be exploited
- ▶ both in *p*Pb (left) as well as in Pb*p* (right)
- also large statistics for double charm production studies

2016 pPb run: open charm baryons

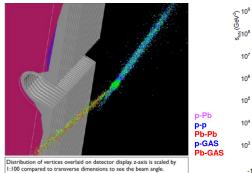

▶ large data sample down to $p_T = 0$ both in pPb (left) and Pbp (right)

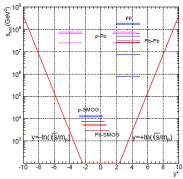
2016 pPb run: open beauty


ightharpoonup significant samples of beauty meson & baryons down to $p_T=0$, analysis started


2016 *p*Pb run: χ_c

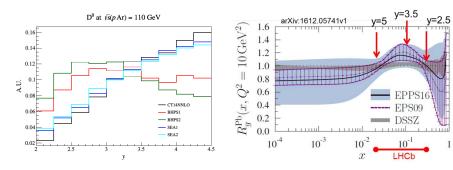
- ▶ first look
- clarify factorisation break-down further after $\psi(2S)$ measurement


2016 pPb run: double charm production



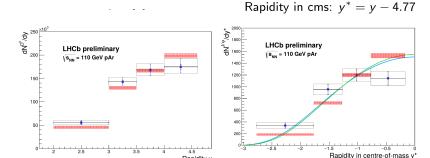
- first look with bachelor student
- check DPS and correlations in pPb

LHCb fixed target



- ▶ noble gas injections with pressures 10⁻⁶-10⁻⁷ mbar introduced for improved luminosity measurements olorredgive relation of highest multiplicity in PbAr vs. PbPb
- used as internal gas target for p-gas and ion-gas collisions: He(A=4), Ne(A=20), Ar(A=40) used so far
- LHCb acceptance reaches close to midrapidity
- ▶ first preliminary measurements in pAr and in pHe collisions from Run2

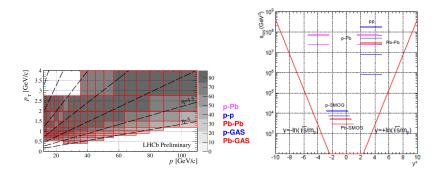
am I - Beam 2, Beam I - Gas, Beam 2 - Gas.


Charm production in fixed-target collisions: unique constraints

Left: figure by Philip Ilten link, considered pdf models based on CT14 from: Phys. Rev. D 93, 074008; right: figure from talk by Emilie Maurice at QM 2017

sensitive to nuclear modification of parton distribution function & intrinsic charm on 2015 data shown at Quark Matter 2017: first public physics result from SMOG data

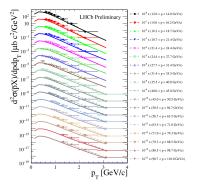
Charm production in fixed target collisions: first results



LHCb-CONF-2017-001

Rapidity v

- normalised distributions compared with Pythia 8 with CT09MCS and with parameterisation of world-data by Arleo et al. for charmonium
- final analysis together with pHe result soon


Soft and collective particle production

Left kinematic bins of \bar{p} -cross section measurement in pHe LHCb-CONF-2017-002

- forward spectrometer geometry allows low p_T measurements at moderate track momenta
- in fixed-target mode: production studies close to midrapidity well suited for cosmic-ray physics references

\bar{p} -production in pHe collisions

Statistical:		
Yields in data and PID calibration	0.7 - 10.8% (< 3% for most bins)	
Normalization	2.5%	
Correlated Systematic:		
Normalization	6.0%	
Event and PV requirements	0.3%	
PV reco	0.8%	
Tracking	2.2%	
Nonprompt background	0.3 - 0.7%	
Residual vacuum background	0.1%	
Uncorrelated Systematic:		
Tracking	3.2%	
IP cut efficiency	1.0%	
PID	2.0 - 28% (< 10% for most bins)	
Simulated sample size	$0.8 - 15\%$ (< 4% for $p_T < 2$ GeV/c)	

LHCb-CONF-2017-002, EPOS in solid lines.

- precise measurement demonstrates the feasibility of primary particle spectra measurements in fixed-target events
- luminosity determined via elastic e-proton scattering
- \blacktriangleright EPOS-LHC underestimates the cross sections by about 50 %
- starting point for comparative studies for other particle species and collision systems

Conclusions

- ► LHCb: fully instrumented spectrometer with unique kinematics with flexible trigger system in collider and fixed-target mode
- ▶ PbPb: first understanding achieved
- ▶ important pPb results to constrain gluons at low-x and much more to come
- upgrade in talk on Wednesday