Isolated photons measurement in pp and p–Pb collisions at LHC with ALICE

Erwann Masson

Laboratoire Subatech, Nantes

Rencontres QGP France 2017, 11 October 2017

Isolated photons measurement in pp and p–Pb collisions

- Physics motivation
- Experimental context
- Analysis details
- Status
 - ightarrow pp at $\sqrt{\mathbf{s}}=7$ TeV
 - ightarrow p-Pb at $\sqrt{s_{
 m NN}}=$ 5.02 TeV
- Conclusions and outlook

Isolated photons measurement in pp and p–Pb collisions at LHC with ALICE – Rencontres QGP France 2017

Why study the γ_{prompt} component?

► Produced early in hard processes, colourless (not affected by the traversed medium) \rightarrow calibrated energy reference for studying jet energy loss via γ -jet and γ -hadron correlations

► Described by **perturbative QCD** (pQCD) at the **Next-To-Leading Order** (NLO) \rightarrow measuring γ_{prompt} better constrains models

Analysis details

Status

Measuring prompt photons

 \blacktriangleright γ_{prompt} emitted back to the other hard-produced particles \rightarrow selection using an isolation method

Isolated photons

► An isolation cone of radius R_{cone} is defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma}) \rightarrow \text{it is}$ isolated if the energy inside this cone is below a set threshold $E_{\text{T}}^{\text{max}}$

$$m{R}_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2}$$
 and $\sum_{ ext{cone}} m{E}_{ ext{T}} < m{E}_{ ext{T}}^{ ext{max}}$

• Common values $\rightarrow \mathbf{R}_{cone} = 0.4$ and $\mathbf{E}_{T}^{max} = 2 \text{ GeV}$

Measuring prompt photons

Isolated photons

► An isolation cone of radius R_{cone} is defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma}) \rightarrow \text{it is}$ isolated if the energy inside this cone is below a set threshold $E_{\text{T}}^{\text{max}}$

$$m{R}_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2}$$
 and $\sum_{ ext{cone}} m{E}_{ ext{T}} < m{E}_{ ext{T}}^{ ext{max}}$

• Common values
$$\rightarrow \mathbf{R}_{cone} = 0.4$$
 and $\mathbf{E}_{T}^{max} = 2 \text{ GeV}$

Measuring prompt photons

 \blacktriangleright γ_{prompt} emitted back to the other hard-produced particles \rightarrow selection using an isolation method

Isolated photons

► An isolation cone of radius R_{cone} is defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma}) \rightarrow \text{it is}$ isolated if the energy inside this cone is below a set threshold $E_{\text{T}}^{\text{max}}$

$$m{R}_{ ext{cone}} = \sqrt{(\eta - \eta_{\gamma})^2 + (arphi - arphi_{\gamma})^2}$$
 and $\sum_{ ext{cone}} m{E}_{ ext{T}} < m{E}_{ ext{T}}^{ ext{max}}$

• Common values
$$\rightarrow \mathbf{R}_{cone} = 0.4$$
 and $\mathbf{E}_{T}^{max} = 2 \text{ GeV}$

Isolated photons measurement in pp and p–Pb collisions at LHC with ALICE – Rencontres QGP France 2017

- ► V0 → minimum bias **trigger** ("raw" events)
- ► ITS/TPC → primary vertex determination + charged particle tracking and identification
- EMCal/DCal \rightarrow electromagnetic particles measurement (especially γ and mesons) + γ /jet trigger

EMCal design and principle

Global properties

- ► 12 supermodules → 12288 cells with Δη × Δφ = 0.0143 × 0.0143
- ► Each cell → 76 lead and 77 scintillator alternating layers (24.6 cm thick in total)
- ▶ Energy/position resolutions $\rightarrow 4.8 \%/E \oplus 11.3 \%/\sqrt{E} \oplus 1.7 \%$ and 5.3 mm/ $\sqrt{E} \oplus 1.5$ mm
- \blacktriangleright Used as trigger detector \rightarrow Level-0 and Level-1 on γ and jets
- 2011-2013 → 10 supermodules in data taking DCal → active since 2015 (8 supermodules)

Detection principle and reconstruction

- Electromagnetic-interacting particles induce electromagnetic showers in the EMCal layers
- ► Adjacent cells with energy deposited in here → grouped in clusters
- Candidate photon selection based on several criteria on clusters

Physics motivation	Experimental context	Analysis details	Status	Conclusions
Data selection Common to pp and p-Pb ana	lyses			
Events				
 High-level EMCal Interaction prima ~ 10% of events 	γ triggers ury vertex $ ightarrow {f v_z} < 10$ or rejected	om	vertex_z.pdf	

Physics motivation	Experimental context	Analysis details	Status	Conclusions
Data selection Common to pp and p-Pl) o analyses			
 Events High-level EM Interaction pr ~ 10% of even 	Cal γ triggers • imary vertex $ ightarrow {f v}_{z} < 10$ cr nts rejected	n	vertex_z.pdf	
Clusters Cluster total (Cluster time (Rejection of e: Number of ce Number of ce Number of loc	energy > 300 MeV E (–30 ns, 30 ns) xotic clusters Ils per cluster ≥ 2 Ils from EMCal border and b cal maxima per cluster ≤ 2	ad cells ≥ 2	time.pdf	

Photon selection

Neutral clusters (charged particle veto)

► Candidate clusters must not match a track → only neutral clusters are kept

$$\Delta \eta = |\eta_{\rm clus} - \eta_{\rm track}| > 0.02$$

 $\Delta \varphi = |\varphi_{\text{clus}} - \varphi_{\text{track}}| > 0.03$

Physics motivation

Experimental context

Analysis details

Photon selection

Neutral clusters (charged particle veto)

► Candidate clusters must not match a track → only **neutral clusters** are kept

$$\Delta \eta = |\eta_{
m clus} - \eta_{
m track}| > 0.02$$

$$\Delta arphi = |arphi_{ ext{clus}} - arphi_{ ext{track}}| > 0.03$$

Candidate photons (shower shape cuts)

Clusters shower shape σ²_{long} is used to reject the γ_{decay} component

Status

$$0.1 < \sigma_{
m long}^2 < \left(\sigma_{
m long}^2
ight)_{
m max}$$

Physics motivation

Experimental context

Analysis details

Photon selection

Neutral clusters (charged particle veto)

Candidate clusters must not match a track
 → only neutral clusters are kept

$$\Delta\eta = |\eta_{ ext{clus}} - \eta_{ ext{track}}| > 0.02$$

$$\Delta arphi = |arphi_{ ext{clus}} - arphi_{ ext{track}}| > 0.03$$

Candidate γ_{prompt} (isolation)

Candidate photons (shower shape cuts)

Clusters shower shape σ²_{long} is used to reject the γ_{decay} component

Status

$$0.1 < \sigma_{
m long}^2 < \left(\sigma_{
m long}^2
ight)_{
m max}$$

Physics n	notivation	Experimental context	Analysis details	Status	Conclusions
Signa	al extrac	tion and backgrou	nd estimation		
$\sum_{\text{cone}} oldsymbol{E}_{ oldsymbol{T}}$ (GeV)	N n	N _w			

The ABCD method

- ► A = isolated narrow clusters → mainly signal
- B = isolated wide clusters
- = non-isolated wide clusters → mainly background

Analysis details

Status

Signal extraction and background estimation

The ABCD method

- ► A = isolated narrow clusters → mainly signal
- B = isolated wide clusters
- • = non-isolated narrow clusters
- D = non-isolated wide clusters
 → mainly background

Quantities

- ▶ S^J_i = γ_{prompt} signal in region (i, j)
- B^j_i = background in region (i, j)
- N^J_i = total population in region (i, j)
 - $\rightarrow \textbf{N}_{i}^{j}=\textbf{S}_{i}^{j}+\textbf{B}_{i}^{j},$ what we measure

 $i \in (n, w)$, i.e. (narrow, wide)

- $j \in (iso, \overline{iso})$, i.e. (isolated, non-isolated)
- Signal in region A

$$\mathbf{S}_{n}^{iso} = \mathbf{N}_{n}^{iso} - \mathbf{B}_{n}^{iso}$$

Status

Signal extraction and background estimation

Quantities

- S^j_i = γ_{prompt} signal in region (i, j)
- B^j_i = background in region (i, j)
- N^j_i = total population in region (i, j)
 - ightarrow $N_{i}^{j}=S_{i}^{j}+B_{i}^{j}$, what we measure

 $i \in (n, w)$, i.e. (narrow, wide)

- $j \in (iso, \overline{iso})$, i.e. (isolated, non-isolated)
- Signal in region A

$$\mathbf{S}_{n}^{iso} = \mathbf{N}_{n}^{iso} - \mathbf{B}_{n}^{iso}$$

The ABCD method

- ► A = isolated narrow clusters → mainly signal
- B = isolated wide clusters
- O = non-isolated narrow clusters
- ► D = non-isolated wide clusters → mainly background

Assumptions

- ► Only **background clusters** in **B**, **O** and **D** → $(N_w^{iso}, N_n^{iso}, N_w^{iso}) \equiv (B_w^{iso}, B_n^{iso}, B_w^{iso})$
- Background isolation fraction equal in signal (A, O) and background (B, D) regions

Purity estimation

► Background estimation in region A

$$\textbf{\textit{B}}_{n}^{iso} = \textbf{\textit{N}}_{w}^{iso} \times \textbf{\textit{N}}_{n}^{\overline{iso}} / \textbf{\textit{N}}_{w}^{\overline{iso}}$$

Purity estimation

Background estimation in region A

$$\mathbf{B}_{n}^{iso} = \mathbf{N}_{w}^{iso} \times \mathbf{N}_{n}^{\overline{iso}} / \mathbf{N}_{w}^{\overline{iso}}$$

▶ Introduction of a contamination $\mathbb C$ and a purity $\mathbb P$ in region (A)

$$\mathbb{C} = \frac{\mathbf{B}_{n}^{\text{iso}}}{\mathbf{N}_{n}^{\text{iso}}} = \frac{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}} \Rightarrow \mathbb{P} = 1 - \frac{\mathbf{B}_{n}^{\text{iso}}}{\mathbf{N}_{n}^{\text{iso}}} = 1 - \frac{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}$$

Experimental context

Analysis details

Status

Purity estimation

Background estimation in region A

$$\mathbf{B}_{n}^{iso} = \mathbf{N}_{w}^{iso} \times \mathbf{N}_{n}^{\overline{iso}} / \mathbf{N}_{w}^{\overline{iso}}$$

▶ Introduction of a contamination $\mathbb C$ and a purity $\mathbb P$ in region (A)

$$\mathbb{C} = \frac{\textbf{B}_{n}^{\text{iso}}}{\textbf{N}_{n}^{\text{iso}}} = \frac{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}} \Rightarrow \mathbb{P} = 1 - \frac{\textbf{B}_{n}^{\text{iso}}}{\textbf{N}_{n}^{\text{iso}}} = 1 - \frac{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}$$

► Assumptions not valid, there may be signal in (B), (C) and (D) and asymmetric γ_{decay} in (A) \rightarrow (P biased, to be corrected using Monte-Carlo (MC) simulations

Experimental context

Analysis details

Status

Purity estimation

Background estimation in region A

$$\mathbf{B}_{n}^{\mathrm{iso}} = \mathbf{N}_{\mathrm{w}}^{\mathrm{iso}} \times \mathbf{N}_{n}^{\overline{\mathrm{iso}}} / \mathbf{N}_{\mathrm{w}}^{\overline{\mathrm{iso}}}$$

▶ Introduction of a contamination $\mathbb C$ and a purity $\mathbb P$ in region $\mathbb A$

$$\mathbb{C} = \frac{\textbf{B}_{n}^{\text{iso}}}{\textbf{N}_{n}^{\text{iso}}} = \frac{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}} \Rightarrow \mathbb{P} = 1 - \frac{\textbf{B}_{n}^{\text{iso}}}{\textbf{N}_{n}^{\text{iso}}} = 1 - \frac{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}{\textbf{N}_{w}^{\text{iso}} \times \textbf{N}_{n}^{\text{iso}}}$$

- ► Assumptions not valid, there may be signal in (B), (C) and (D) and asymmetric γ_{decay} in (A) \rightarrow (P biased, to be corrected using Monte-Carlo (MC) simulations
- Two MC samples → jet-jet (JJ, background) + γ-jet (GJ, signal), both mixed and used to compute a contamination correction factor α

$$\alpha = \frac{\left(\boldsymbol{B}_{n}^{\text{iso}}\right)_{\text{JJ}}}{\left(\boldsymbol{B}_{n}^{\text{iso}}\right)_{\text{JJ}+\text{GJ}}} = \left(\boldsymbol{B}_{n}^{\text{iso}}\right)_{\text{JJ}} \times \left(\frac{\boldsymbol{N}_{\text{W}}^{\overline{\text{iso}}}}{\boldsymbol{N}_{\text{W}}^{\text{iso}} \times \boldsymbol{N}_{n}^{\overline{\text{iso}}}}\right)_{\text{JJ}+\text{GJ}} \Rightarrow \ \mathbb{P}_{\text{corr}} = 1 - \alpha \times \left(\frac{\boldsymbol{N}_{\text{W}}^{\text{iso}} \times \boldsymbol{N}_{n}^{\overline{\text{iso}}}}{\boldsymbol{N}_{\text{W}}^{\overline{\text{iso}}} \times \boldsymbol{N}_{n}^{\overline{\text{iso}}}}\right)_{\text{data}}$$

Physics motivation Experimental context Analysis details Status

Isolated photons in pp collisions at $\sqrt{s}=$ 7 TeV

Specifications

- 2011 datasets (LHC11c/d, 88 runs)
- ► EMCal Level-0 γ trigger at **5.5 GeV** \rightarrow **8.6** \times **10⁶ events**
- ► Integrated luminosity → L_{int} = 473 ± 22 (stat) ± 17 (syst) nb⁻¹

► Good agreement between **measurement and NLO** predictions

Isolated photons in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

- Consistent with the ATLAS and CMS measurements in the overlapping E_T region (within uncertainties)
- Access to lower E_T isolated photons

Physics motivation	Experimental context	Analysis details	Status	Conclusions
Isolated photo	ons in p–Pb collisions	s at $\sqrt{s_{ m NN}}=$ 5.02 T	ſeV	
Specifications				
► 2013 datasets	$(79 \text{ runs}) \rightarrow p-Pb (LHC13)$	d/e) and Pb-p (LHC1	3f)	

- EMCal Level-1 γ triggers \rightarrow 11 GeV and 7 GeV \rightarrow **1.2** \times **10**⁶ and **580** \times **10**³ events
- ► Same **E**_T range than in pp analysis, easy comparison

- Charged UE estimation in the TPC acc. → φ-band method sensitive to the opposite jet
- ▶ η -band method → **best choice** for evaluating the UE

- ▶ Charged UE estimation in the TPC acc. $\rightarrow \varphi$ -band method **sensitive to the opposite jet**
- ▶ η -band method → **best choice** for evaluating the UE

Isolation

Isolation criteria may be applied then

$$m{R}_{ ext{cone}} = 0.4$$
 and $\sum_{ ext{cone}} m{E}_{ ext{T}} -
ho_{ ext{UE}} imes m{A}_{ ext{cone}} < 2 \, ext{GeV}$

► Good agreement between p-Pb and Pb-p but low statistics at high energy in p-Pb → working on how to combine the two datasets Physics motivationExperimental contextAnalysis detailsStatusConclusionsSteps to the isolated photon cross section in p-Pb at $\sqrt{s_{NN}} = 5.02 \, \text{TeV}$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d} E_{\mathrm{T}}\,\mathrm{d}\eta} = \frac{\mathbf{N}_{\mathrm{ev}}\times\mathbb{P}_{\mathrm{corr}}}{\mathcal{L}_{\mathrm{int}}\times\varepsilon}\times\frac{\mathrm{d}^2\mathbf{N}}{\mathbf{N}_{\mathrm{ev}}\,\mathrm{d} E_{\mathrm{T}}\,\mathrm{d}\eta}$$

Physics motivation	Experimental context	Analysis details	Status	Conclusions
Conclusions				

Isolated photons in pp at $\sqrt{s} = 7$ TeV

- Compatible with NLO calculations
- ► Improvement **at low E**T with respect to ATLAS and CMS

Isolated photons in p-Pb at $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$

- Estimation of the underlying event with various methods
- First measurement of the isolated photon spectrum and purity with ALICE
- Determination of the isolated photon reconstruction efficiency (ongoing)
- Evaluation of systematic uncertainties associated to the measurement (ongoing)

Physics motivation	Experimental context	Analysis details	Status	Conclusions
Outlook				

► Determine the nuclear modification factor R_{p-A} to compare p-Pb and pp measurements

Outlook

► Determine the **nuclear modification factor** R_{p-A} to compare p-Pb and pp measurements

RpAplot.png

Preliminary studies by Lucile Ronflette (many changes in the analysis framework) L. Ronflette, PhD thesis, Université de Nantes (2014)

Merci pour votre attention

Isolated photons measurement in pp and p-Pb collisions at LHC with ALICE

Erwann Masson Laboratoire Subatech, Nantes

Backup

Several approaches to study photons

Photon Conversion Method (PCM)

 Uses electron/positron pair tracks (IT-S/TPC) to reconstruct γ_{decay} and then π⁰ with invariant mass analysis

PHOS

- Uses energy deposition in crystals to reconstruct γ
- ► Combined with PCM for statistical subtraction to study $\gamma_{\text{direct}} \rightarrow R_{\gamma} = (\gamma_{\text{incl}}/\pi^0)/(\gamma_{\text{decay}}/\pi^0)$

Top left fig.: ALICE Collab., Nucl. Phys. A 855 (2011) / Right fig.: ALICE Collab., Phys. Lett. B 754 (2016)

Isolated photons measurement in pp and p-Pb collisions at LHC with ALICE - Rencontres QGP France 2017

The $\pi^{\mathbf{0}}$ background, different cases to consider

- ► $\pi^0 \rightarrow \gamma\gamma$ (BR = 98.8%), emitted with an **angle** $\theta_{\gamma\gamma}$ following $\sin^2 \theta_{\gamma\gamma} = \frac{m_{\pi^0}^2}{E_{\pi^0}^2}$
- ► $E_{\pi^0} \nearrow \Rightarrow \theta_{\gamma\gamma} \searrow \rightarrow \text{resulting } \gamma_{\text{decay}} \text{ clusters are merged at mid-high } E_{\pi^0}$

- ► Low E_{π^0} paired γ_{decay} clusters possibly inside the isolation cone \rightarrow one as candidate γ_{prompt} , the other as contributor to $\sum_{cone} E_T$
- Low E_{π⁰} asymmetric γ_{decay} clusters possibly considered as candidate γ_{prompt} but not as contributor to Σ_{cone} E_T (one of them inside, the other outside the cone)
- ► High E_{π^0} merged γ_{decay} clusters possibly considered as candidate γ_{prompt} but not as contributor to $\sum_{\text{cone}} E_{\top}$

Shower shape cuts

-

E_{T} range (GeV)	(A), (C) $\sigma_{\rm long}^2$ range	B , D $\sigma_{\rm long}^2$ range
10 - 12	(0.10,0.45)	(0.55, 1.55)
12 - 16	(0.10,0.40)	(0.50, 1.50)
16 - 18	(0.10,0.35)	(0.45,1.45)
18-60	(0.10,0.30)	(0.40, 1.40)