

Study of inclusive production ratio $\Psi(2S)/J/\psi$ versus charged particle multiplicity in pp collisions at \sqrt{s} = 13 TeV with ALICE experiment at LHC

Manuel Guittière
PhD Student at Subatech
Nantes, FRANCE
Master Internship
(March – July 2017)

http://alice-project-bestpictures.web.cern.ch

Outline

- I Physics motivations
- II ALICE experiment
- III Analysis
- **IV** Results

http://aliceinfo.cern.ch/public/en/Chapter1/news-nov2011.html

Charmonia probes

- \triangleright Ψ' and J/Ψ : $c\overline{c}$ bound states.
- Behavior in heavy-ion collisions:

- Charmonia Ψ' and J/Ψ sensitive to QGP but also to cold nuclear effects (coherent parton energy loss, shadowing...).
 - Comparison with collisions where QGP is not expected (p-Pb and pp).
- Production sources of Ψ' and J/Ψ :
 - Direct production.
 - Other charmonia bound state decays (ex : χ_c).
 - B-hadron decays (non-prompt).

Previous experimental measurements

PHENIX collaboration (2013) arXiv:1305.5516

- R_{dAu} (Nuclear modification factor): Ratio of charmonia production yields measured in dAu and pp, normalized to the mean number of pp collisions.
- \triangleright Unexpected relative suppression of Ψ' observed.

Previous experimental measurements

Ψ' is more suppressed than J/Ψ. Shadowing and Energy loss cannot describe this result. CMS observed a relative suppression of Υ(2S) compared to Υ(1S) in pp, pPb and PbPb collisions.

Study of $\Psi'/J/\Psi$ production ratio in pp collisions

II – ALICE experiment

III – Analysis

IV – Results

ALICE detectors

II – ALICE experiment

III – Analysis

IV – Results

Charged particle multiplicity

- \triangleright Multiplicity N_{ch} : Number of primary charged particles produced during the collision
- Measurement of observables as a function of multiplicity: Possible comparison between the results from different collision systems (pp, p-Pb, Pb-Pb).
- ightharpoonup Reached multiplicities in pp at \sqrt{s} = 13 TeV are comparable to p-Pb à $\sqrt{s_{\rm NN}}$ = 5.02 TeV :
 - About 4 times mean multiplicity $\langle dN_{ch}/d\eta \rangle^{pp} \approx 9$ (at 13 TeV) with respect to $\langle dN_{ch}/d\eta \rangle^{pPb} \approx 20$ (at 5.02 TeV).
- Multiplicity measurement: track reconstruction of charged particles thanks to SPD (2 inner layers of ITS).

Event selection

> Event selection criteria:

- Minimum Bias (MB : pp collision), signal measured in VOA and VOC
- ❖ z_v coordinate of the reconstructed vertex : -10 < z_v < 10 cm
- Reject EM interactions
- Reject beam-gas interactions
- Reject beam-pipe interactions
- * Rejet satellite collisions
- ❖ Pseudo-rapidity range : -1 < η < 1</p>

Defective parts in SPD (efficiency loss, not working modules...), a correction of reconstructed tracklets is necessary.

Data-Driven Correction Method

 \triangleright **DDCM**: data driven correction method based on the mean raw number of reconstructed SPD tracklets as a function of the interaction vertex coordinate (z_v).

- Advantage : MC simulations not needed.
- ➤ Basis : equalization of the mean raw number of reconstructed SPD trackelts as a function of z_v, with respect to a reference value, and conversion of the number of corrected tracklets into a number of charged particles.
- ➤ **Condition**: normalization by the mean multiplicity to remove uncertainties due to AccxEff loss of the detector (undetermined by the method and assumed to be independent of multiplicity).

Data-Driven Correction Method

- Distribution of the mean number of corrected tracklets uniform, mean multiplicity: 8.42 for 1 < NtrCorr < 50.</p>
- Reference value : minimum of mean raw number of reconstructed SPD tracklets.

Minimizes the correction effects on resolution.

➤ 4 ranges for number of corrected tracklets between 1 and 50.

Multiplicity distribution

- > Expected decrease of the multiplicity distribution (correction effect).
- \triangleright Choice of multiplicity ranges : N_{events} ($N_{tr}^{Corr} > 50$) < 0.1%.

Measurement of Ψ' and J/Ψ production

Event and track selection:

- > Trigger VOA and VOC, and dimuon unlike sign event identified (MTR) and reconstructed by the muon tracking system (MCH).
- Matching between the reconstructed track in MCH and a detected track in MTR above $p_T > 1$ GeV/c threshold (reduction of pion and kaon contamination).
- Acceptance range of the spectrometer for single muon tracks (MS) : $-4 < \eta < -2.5$
- Rejection of tracks passing through non-uniform parts of the front absorber.
- \triangleright Rapidity range for muon pairs : 2.5 < y < 4

Measurement of Ψ' and J/Ψ production

Signal exctraction:

- Invariant mass histograms filled with events corresponding to multiplicity ranges.
- Testing with convolutions of fit functions for signal and background.
- ➤ Each test is performed with 2 invariant mass ranges and 2 sets of parameters for the fit function distribution tails.
- Mean value of all fit tests, systematic uncertainty is given by RMS.

II – ALICE experiment

III – Analysis

IV - Results

Inclusive production ratio $\Psi(2S) / J/\psi$

- \triangleright Uncertainties dominated by statistical uncertainties (Ψ').
- Central values: indication of a multiplicity dependance of the production ratio (relative suppression).
- Results of a preliminary study to be continued.

Outlooks

- Additional studies :
 - Improve the signal extraction (more tests with different signal functions).
 - Check the hypotheses with other multiplicity measurement methods (MC).
- Increase dataset (reduction of statistical uncertainties).
 - L_{int} 2015 : 3.2 pb⁻¹ (this analysis)
 - L_{int} 2016 : 8.3 pb⁻¹
 - L_{int} 2017 : 7.4 pb⁻¹
 - **Expected reduction of statistical uncertainties** ≈ *1/2.5
- Comparison with theoretical predictions.

Thank you!

10/10/2017

Manuel Guittière - QGP-France, Etretat