

Charm production with SMOG at LHCb

Running LHCb in a fixed-target mode

Heavy flavor production in Heavy Ion collisions

LHCb detector

- Designed for heavy flavor physics
- Single arm spectrometer, fully instrumented in 2 < y < 5

Excellent vertex, IP and decay time resolution $\sigma(IP) \approx 20 \mu m$

Very good momentum resolution δp/p≈0.5–1% for 0<p<200 GeV/c

Particle identification

 $\epsilon_{\text{K}\to\text{K}} \approx 95\%$ for $\epsilon_{\pi\to\text{K}} \approx 5\%$ up to 100 GeV/c $\epsilon_{\mu\to\mu} \approx 97\%$ for $\epsilon_{\pi\to\mu} \approx 1-3\%$

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Fixed-target mode: SMOG (System for Measuring Overlap with Gas)

- Injecting gas in LHCb Vertex Locator (VELO) region
 - Primary role : luminosity measurement
 - Can be used as an internal gas target
 - Allows measurement of p-gas and ion-gas interactions

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

Noble gas only:

(very low chemical reactivity)

He, Ne, Ar, Kr, Xe A = 4, 20, 40, 84, 131

Gaz pressure: 10⁻⁷ to 10⁻⁶ mbar

Fixed-target program

LHCb rapidity coverage in the center-of-mass system

Nucleus-Nucleus collisions

Physics case

- − 2.75 TeV Pb beam on fixed target \rightarrow Vs_{NN}^{\sim} 71 GeV (close to the 17 GeV regime reached at SPS)
 - Investigate the color screening
 - Thanks to unique capabilities, LHCb offers new opportunities in the charm sector: J/ψ , ψ' , χ_c , D^0 , $D^{+/-}$, D^* , Λ_c ... (in the 90's the NA50/SPS experiment measured only J/ψ and ψ' in PbPb @ 17 GeV)
- Accessing similar energy density regime (than SPS): operate PbAr@71 GeV
 - Particle multiplicity is related to event centrality and center-of-mass energy
 - Particle multiplicity can be used to compare different A+B collisions at different $\sqrt{s_{NN}}$

	System \ centrality	60 – 100%	50 – 60%	40 – 50%	30 – 40%	20 – 30%	10 – 20 %	0 – 10%
← THC →	PbNe – 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494.9
	PbAr – 71 GeV	123.6	308.8	496.5	806.6	1228.3	1711.9	2372.7
	PbKr – 71 GeV	196.9	533.6	919.1	1451.2	2205.5	2986.6	4084.3
SPS	PbPb – 17 GeV	124.2	331.6	605.9	919.6	1338.7	2035.8	2980.5

- PbAr @ 71 GeV multiplicity \equiv PbPb@17 GeV multiplicity
 - → PbAr @ 71 GeV and PbNe are a good starting points to compare with NA50 (SPS)

Proton-Nucleus collisions

- Serve as a baseline for nucleus-nucleus collisions
- **Specific proton-nucleus physics program:**
 - Nuclear parton distribution function (nPDF), nuclear absorption, ...
- With SMOG, LHCb offers a large rapidity coverage (~3 rapidity units) at large Bjorken-x x₂
- Give access to **nPDF anti-shadowing** region and **intrinsic charm** content in the nucleon

1st Heavy Flavor analysis in fixed-target mode

pAr collisions @ 110 GeV (oct. 2015)

- 17h of pAr collisions with 685 non-colliding bunches: ~4×10²² Protons On Target
- Select events with Beam 1 only at interaction point
- Apply topological cuts to remove possible residual proton-proton collisions (ghost charge)
- Select events with Z_{vertex} inside VELO Z_{vertex} ∈ [-20 cm, 20 cm]

Signal extraction

(LHCb-CONF-2017-001)

J/ψ and D⁰ signal

- Overall data (17h) : $^{\sim}500 \text{ J/}\psi$ $^{\sim}6500 \text{ D}^{\circ}$

Very clear signal, very small background

J/ψ and D⁰ differential production

(<u>LHCb-CONF-2017-001</u>)

+ 4 p_T bins \in [0, 600] - [600, 1200] - [1200, 1800] - [1800, 8000] MeV/c

J/ψ and D⁰ differential production

(LHCb-CONF-2017-001)

4 rapidity bins: [2, 3] – [3, 3.5] – [3.5, 4] – [4, 4.6]

Yield corrections and uncertainties

(LHCb-CONF-2017-001)

$$Y = \frac{Y^{measured}}{\epsilon}$$

Y^{measured} extracted from mass fits are corrected for different efficiencies:

$$\epsilon = \epsilon_{acc} \times \epsilon_{trig} \times \epsilon_{sel} \times \epsilon_{reco} \times \epsilon_{PID}$$

geometrical acceptance, trigger, selection, reconstruction, particle identification

Corrections are computed using pAr simulation samples and pp 13 TeV data

Source of uncertainties	Ј/ψ у	J/ψ p _T	D ⁰ y	$D^0 \; p_T$
Corr. between bins				
Signal selection	1.4%	1.4%	2.2%	2.2%
Signal extraction	2.3%	2.3%	2.3%	2.7%
Uncorr. between bins				
MC sample	(1.2 – 2.6)%	(0.9 - 1.4)%	(1.0 - 1.9)%	(1.0 – 1.5)%
Tracking	(2.2 – 3.7)%	(2.2 – 2.9)%	(2.7 – 3.4)%	(2.8 – 3.6)%
PID	(0.2 – 2.7)%	(0.1 - 2.0)%	(4.1 – 8.8)%	(4.8 – 6.9)%
Stat. uncertainties	<i>(7.7 – 12.5)%</i>	(7.8 – 13.6)%	(0.7 – 3.7)%	(0.6 – 3.4)%

 J/ψ uncertainties are dominated by statistical uncertainties

J/ψ corrected yields

(LHCb-CONF-2017-001)

• J/ψ transverse momentum and rapidity distributions

Box = quadractic sum of all uncertainties

- Red boxes = MC
 - Pythia8-CT09MCS/NRQCD
 - Overall MC yields normalized to overal data yields

J/ψ yields compared to phenomenological parametrizations

Rapidity in CMS: $y^* = y - 4.77$

Phenomenological parametrizations based on

- Arleo, F. and Peigné, S. J. High Energ. Phys. (2013) 2013:122
- Arleo, F. et al., J. High Energ. Phys. (2013) 2013: 155
- MC and phenomenological distributions are normalized to data

Phenomenological parameters

- extracted from linear (blue plain curve) and logarithmic (green dashed curve) interpolations between 41.5 GeV and 200 GeV measurements
- No strong difference observed within uncertainties

D⁰ corrected yields

(LHCb-CONF-2017-001)

• D⁰ transverse momentum and rapidity distributions

Box = quadractic sum of all uncertainties

- Red boxes = MC
 - Pythia8-CT09MCS
 - Overall MC yields normalized to overal data yields

J/ψ to D⁰ ratios

(LHCb-CONF-2017-001)

 J/ψ / D⁰ cross section ratio *vs.* p_T and rapidity

Luminosity cancel out in the cross section ratio

$$\left(\frac{\sigma(J/\psi)}{\sigma(D^0)} = \frac{Y(J/\psi)}{\mathcal{L}} \times \frac{\mathcal{L}}{Y(D^0)}\right)$$

- No significant dependence of $\sigma(J/\psi)/\sigma(D^0)$ with rapidity
- $\sigma(J/\psi)/\sigma(D^0)$ ratio increases with transverse momentum
- Need theoretical predictions!

Bjorken-x distributions

(LHCb-CONF-2017-001)

• Definition used in this analysis: $x_2 = \frac{M}{\sqrt{s_{NN}}} e^{-y^*}$

Overall MC yields normalized to overal data yields

- Bjorken-x range covered by the data
 - $J/\psi x_2 \in [0.03, 0.45]$
 - $D^0 x_2 \in [0.02, 0.27]$
- Access Intrinsic charm regime
- Need theoretical predictions!

(Rapidity in CMS: $y^* = y - 4.77$)

Other charmed hadrons

(LHCb-CONF-2017-001)

Other possible measurements: signals extracted from these pAr data

pHe @ 87 GeV data (2016)

2016 - pHe@87 GeV: J/ψ and D^0 signal

LHCD

Conclusion

- 1st measurement of heavy flavor production in fixed-target mode
 - Measured \sim 500 J/ ψ and 6500 D⁰, other charm hadrons observed
 - Demonstrate the feasibility of the program
- Ongoing analysis
 - Finalize pAr@110 GeV J/Ψ/D⁰ analysis
 - perform pHe@87 GeV J/Ψ/D⁰ analysis

- Next data taking
 - − 8 days (~150h) of pNe @ 70 GeV : 5 TeV 2017 winter run → First ψ' and χ_c 's
 - PbNe @ 70 GeV long run during winter 2018 Pb run