SHiP inspired design for the ToF system of the ND280 upgrade

A.Korzenev, P. Mermod / Uni Geneva

D.Gascon, S.Gomez / Uni Barcelona

ND280 upgrade/ToF meeting
May 12, 2017

Upgrade of ND280 (T2K)

- Interaction of beam-neutrinos happen in the calorimeter => background
- Important to know the direction of particles: inside of outside the target
- Min time between the target and callorimeter $\mathrm{t}=85 \mathrm{~cm} / 30 \mathrm{~cm} / \mathrm{ns}=2.8 \mathrm{~ns}$
- 5 sigmas: $\mathrm{dt}=2.8 \mathrm{~ns} / 5 / \sqrt{2}=0.4 \mathrm{~ns}$
- Resolution for PID: see plots of Davide
- ToF system: cast (SHiP-like) or extruded plastic (babyMIND-like)

ToF mass

Sample of preselected ν_{μ} events

Look at all nerticles with ToF information (not only highest momentum)

For details see sinax on Nay
reference configuration

adding new ToF between Target and HTPC

$$
\sigma_{\text {ToF }}=150 \mathrm{ps} \uparrow
$$

$\sigma_{T O F}=50 \mathrm{ps} \uparrow \mathbf{2 2}$

Timing Detector in SHiP

Cast plastic with light collection
by array of SiPMs

- For the TD of size $5 \mathrm{~m} \times 10 \mathrm{~m}$ with a bar $100 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$
- $5 \mathrm{col} \times 182$ row $=910$ bars =>
- 910 bars x 2 = 1820 ch =>
- $1820 \times 8=14560$ SiPMs
- The resolution at 50 cm is $\sim 140 \mathrm{ps}=>$ we can use with 1 m bar and 2 -side readout to be within 100 ps.

50 cm bar, test with cosmics

Proposal for the use of ToF based on a cast plastic

- 6 modules XY with dimensions $230 \mathrm{~cm} \times 230 \mathrm{~cm}$ each
- 12 modules ($\mathrm{YZ}+\mathrm{XZ}$) with dimensions $130 \mathrm{~cm} \times 230 \mathrm{~cm}$ each
- All modules can be assembled with bars of 230 cm long
- No space for plastic around old TPCs (?)

Bar and sensors

- Bar: $230 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$
- Plastic material:
- EJ200 (BC408) or EJ208(BC412)
- Attenuation length ~ 4 m
- 1.42 kg/bar
- Readout from both ends
- 8 sensors of $6 \mathrm{~mm} \times 6 \mathrm{~mm}$
- Example: S13360-6050PE

back side

Array of SiPMs (11\% cheaper)

Modules

- 6 modules XY and 12 modules ($\mathrm{YZ}+\mathrm{XZ}$)
- Surface $6 \times 5.3 \mathrm{~m}^{2}+12 \times 3 \mathrm{~m}^{2}=67.6 \mathrm{~m}^{2}$, weight 0.7 ton
- Number of bars $(230 \mathrm{~cm})=498$. Number of $\operatorname{SiPMs}=498 \times 2 \times 8=7968$
- In case of the 5 mm overlap between bars all estimates to be increased by $5 / 60=8.3 \%$

Options for electronics

- Price per ASIC (MUSIC R1) is 80 EUR. Total: 1000×80 EUR $=80$ kEUR
- Including connectors, PCBs and so on 120 kEUR (estimate by Barcelona Uni)
- Can UniGe also contribute with electronics (Yannick)

Electronics: ASIC vs discrete circuit

- The idea of the readout is basically the same as applied in CTA (Yannick)
- Capacitance increases with the surface of SiPM => rise time increases => time resolution degrades. Solution: readout sensors in parts, amplify and sum
- Advantage of ASIC (MUSIC R1) as compared to the discrete circuit
- Amplification, summation and discrimination within a single chip
- Occupied space is much smaller
- Power consumption is an order of magnitude lower => lower heating => less constrains for the cooling system
- 'current buffer' is used for the input stage of MUSIC => minimum input impedance which is the best for the readout of large capacitance

- A summing ASIC and more...
- Input
- Up to 8 pixels ($6 \times 6 \mathrm{~mm}^{2}$ SiPMs)
- Possible to disable each input reducing overvoltage by 4 V
- Outputs:
- High Gain SUM
- Diff, $100 \Omega, 500 \mathrm{MHz}$
- Low Gain SUM
- Diff, $100 \Omega, 500 \mathrm{MHz}$
- OR trigger
- Per channel, choose between:
- Analog (S.E, $50 \Omega,, 100 \mathrm{MHz}$)
- Digital
- "DC current"
- Sum output
- Per channel mux output
- Integrator: 1 ms time constant
- Control
- Every block and channel can be disabled (power down)
- Many config parameters

Cost estimate: Plastic

- Bar with dimensions: $230 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$
- Scintillator EJ-200 (BC-408, NE/Pilot F), attenuation length 380 cm .
- 1 pcs: 990 EUR
- 2 pcs: 665 EUR
- 500 pcs: 290 EUR
- Total: 500×290 EUR = 145 kEUR
- Scintillator EJ-208 (BC-412, NE-110), attenuation length 400 cm .
- 1 pcs: 995 EUR
- 2 pcs: 665 EUR
- 500 pcs: 295 EUR
- Total: 500×295 EUR $=147.5$ kEUR
- UVT PMMA Light-Guide
- Dimensions: $60 \mathrm{~mm} \times 10 \mathrm{~mm}$ by 4 mm thick tapered to $56 \mathrm{~mm} \times 6 \mathrm{~mm}$
- 1000 pcs: 45 EUR
- Total: 1000×45 EUR = 45 kEUR
- Quotation by Scionix (NL) on Apr 11, 2017

Cost estimate: SiPMs

- based on S13360-6050PE : 6x6mm, $50 \mu \mathrm{~m}$ pixel, low xtalk \& afterpulse, epoxy resin
- Individual SMT packages
- 10 pcs: 11'610 JPY = 106.7 CHF/MPPC
- 100 pcs: 6'290 JPY $=57.8 \mathrm{CHF} / \mathrm{MPPC}$
- 8000 pcs: 2'990 JPY $=27.5 \mathrm{CHF} / \mathrm{MPPC}$, Total: $8000 \times 27.5 \mathrm{CHF}=\mathbf{2 2 0 . 0} \mathbf{k C H F}$
- 10 kpcs: 2'420 JPY = 22.2 CHF/MPPC
- Pricebreak: 10-49 / 100-299 / 5k-9'999 / 10k - 49'999 pcs
- Array 6X6MM-1X8CH-MPPC
- NRE COST SSD: 625 kJPY $=5.8 \mathrm{kCHF}$
- 10 pcs: 57'750 JPY = 530.6 CHF/array => 66.3 CHF/MPPC
- 1000 pcs: 21 '450 JPY = 197.1 CHF/array $=>~ 24.3 \mathrm{CHF} / \mathrm{MPPC}$
- Total: $1000 \times 197.1 \mathrm{CHF}=197.1 \mathrm{kCHF}$
- 2000 pcs: 17'420 JPY = 160.1 CHF/array => 20.0 CHF/MPPC
- Pricebreak: 10 (MOQ) - 49 / 1k - 1'999 / 2k -4'999 pcs
- Quotation by Hamamatsu on Apr 11, 2017
- Exchange rate assumed: $1 \mathrm{CHF}=108.8 \mathrm{JPY}$

Summary for the cost estimate

- Main contributes to the overall cost of the 'cast' version of ToF
- Electronics: 120 kEUR
- Plastic: 145 kEUR
- SiPM arrays: 197.1 kCHF
- Together: 1.1x(120+145)+197.1 = 489 kCHF
- If DRS is used one adds: $1000 \mathrm{ch} \times 50 \mathrm{CHF}=50 \mathrm{kCHF}$
- Reduction of the number of channels (Electronics+SiPMs) => square root reduction of the time resolution
- Time resolution with a long bar will be measured at the test-beam at the end of June.

backup

plastic

SCIONX Holla nd B.V
P.O. Box 143

The Netherlands
Tel. 31 (0)30 6570312
(0)30 6567563

Enill SCIONIX@ws.ni, SALES@scionix.n
Physios Associate Il at University of Geneva, DPNC Auress. 1-1-074, CERN, 1211 Geneve 23, Alt. R. Alexander Korzene
korzenevemail.cern.ch
Quotation Number QU1722026
Description
EJ-200 Plast
Size: $230 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$, edges diamond-milled, faces as-cast.

EJ-208 Plastic Scirtillator
Size: $230 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$, edges diamond-milled. faces as-cast.

Sincerely yours,
R.Bosmans Scionix Holland BV

SCIONIX HOLLAND B.V

Bank:

Dolar accoum no.
Deutsche Bank
44.76 .14 .843,
54.01 .45 .033,

Chamber of Commerce Ulrectrf, Reg. No. 109468 IBAN code: IBAN Code:
VAT. No.:

DEUTM.2N NL97DEUT0447614943 NL 80 OUT0540145033 NL 801595824 B01

Quotation

Quotation No: Quotation Date: Revision No:

Customer No: Your Contact: Your Phone:
Your Fax:
RFQ No:
Sales Contact
Department
Phone
Fax:
E-Mail:

H16544
H16544
11.04 .17
1
HPBS001896
Nexander Korzener
$+41227874753$

Dear Mr Korzenev,
Please find hereatter your requested quotation:

Pos.	Part No. Description	Quantity [pcs]	Unit Price JPY	Net Amount JPY
1.1	NRE COST SSD	1	625'000.00	625000.00
	Non-recurring engineering (SSD)			
2.1	6X6MM-1 ${ }^{\text {P8CH-MPPC }}$	10	57750.00	577500.00
	MPPC 1×8 chamel (based on same chip as $\mathrm{S} 13361-6050 \mathrm{NE}$)			
2.2	6X6MM-1 ${ }^{\text {P8CH-MPPC }}$	1000	21'450.00	21450000.00
	MPPC 1×8 chamel (based on same chip as $\mathrm{S} 13361-6050 \mathrm{NE}$)			

Pricebreak: 10 (MOQ) -49/ $1 \mathrm{~K}-1999 p \mathrm{cs}$
Design: 1x8ch array similar to SMD PKG type like S $13361-6050 \mathrm{NE}$
Quotation valid for:
Terms of Delivery:
Payment Terms:
Free carter Solothurn (CHF 20.-f shipment)
30 days net
Payment Terms: 30 days net

HANAMMATEUS
PHOTON IS OUR BUSINESS

Mr Alexander Korzenev
Département de physique nudéaire et corpusculaire DPNC, University of Geneva 24, Quai Emest-Ansermet
1211 Genève 4
SWITZERLAND

Fig. 21. Each point shows measurements by a single TPC of the energy loss and momentum of positively charged particles produced in neutrino interactions. The expected relationships for muons, positrons, protons, and pions are shown by the curves.

FIG. 25. The flux predictions for the SK far detector and ND280 near detector broken down by the neutrino parent particle type. The error bars, which are too small to be seen in most energy bins, are due to the MC statistical error.

