UHECR interactions

... and the production of astrophysical neutrinos

Credit: Steven Saffi

Daniel Biehl DESY Zeuthen, Germany

20th ISVHECRI, Nagoya University May 21, 2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Interactions of UHECRs in the multi-messenger context

The connection between neutrinos and ultra-high energy cosmic rays

Multi-messenger interpretations rely on our understanding of the involved interactions!

Maximum reachable energy

Why size matters

E_{max} ~ q B R

Terrestrial particle accelerators

- B > 8 T
- R ~ 4.3 km
- E_{max} ~ 13 TeV

Cosmic particle accelerators

- B ~ 1 mT 1 T
- R ~ 100,000 10,000,000,000 km
- E_{max} ~ 300,000,000 TeV

Maximum reachable energy

Why size matters

UHECR interactions with ambient photons

A possible scenario for a generic py source

Jet collides with ambient medium (external shock wave)

Relevant energy scales for UHECR interactions with photons

High-energy nucleus + 'low energy' photon = photo-nuclear physics in the MeV – GeV range

Photon energy in

nucleus rest frame

Photo-hadronic (Aγ) interactions

- **QED scale:** e.g. pair-production $A + \gamma \rightarrow A + e^+ + e^ \varepsilon_r > 1 \text{ MeV}$
- Nuclear scale: nuclear photo-disintegration, e.g. $A + \gamma \rightarrow (A - 1) + n$ $\varepsilon_r > 8 \text{ MeV}$
- Mesonic scale: baryonic resonances, photo-meson production (produces neutrinos), e.g.

 $A + \gamma \to \tilde{A} + \pi^+$ $\varepsilon_r > 140 \text{ MeV}$

• Hadronic scale: hadronic structure becomes relevant for the interaction $\varepsilon_r > 1~{
m GeV}$

Other processes

• Beta-decays, pp-interactions, spontaneous nucleon emission, spallation, de-excitation, ...

Relevant energy scales for UHECR interactions with photons

High-energy nucleus + 'low energy' photon = photo-nuclear physics in the MeV – GeV range

Development of the nuclear cascade

A qualitative and quantitative representation of interactions

Triggering the nuclear cascade

- Example: pure iron injected in a GRB shell, different luminosities
- Development of the nuclear cascade scales with the photon density

$$u_{\gamma}' \sim \frac{L_{\gamma}}{\Gamma^2 R^2}$$

• Internal shock scenario: $R \simeq 2 \Gamma^2 \frac{c t_v}{1+z}$

$$f_{p\gamma} \propto L_{\gamma}/(\Gamma^4 t_v \epsilon_{\gamma,\mathrm{br}})$$

[Waxman, Bahcall, 1998] [Guetta et al., 2004]

N

• Production radius R and luminosity L are the main control parameters for the nuclear cascade and neutrino production

The nuclear cascade in the parameter space

Classification of interactions regions

Parameter space regions for interactions

- Empty cascade:
 - Optically thin to photo-hadronic interactions of all species
 - Low neutrino production, nuclear cascade does not develop
- Populated cascade:
 - Optically thick to nuclei heavier than protons
 - Intermediate neutrino production, broad cascade develops
- Optically thick case:
 - Optically thick to all particles
 - High neutrino production, narrow cascade along the main diagonal

UHECR interactions as a measure for neutrino production

DESY. Neutrinos from UHECR interactions | Daniel Biehl

Current situation on experimental data and theoretical models

Importance of future measurements and improved models

EXFOR data base cross-sections

[https://www-nds.iaea.org/exfor/exfor.html]

- Cross-sections only measured for very few isotopes (red)
- Located mostly on main diagonal (stable elements)
- All other isotopes need models prediction
 → not always well in reproducing the data
- Need future measurements and improved models

[D. Boncioli, A. Fedynitch, W. Winter – Sci. Rep. (2017)]

Impact of nuclear cross-section data and models

Large uncertainties originating from nuclear physics

Comparison between different models

- TALYS (CRpropa 2+ style) predictions not / weakly depending on nuclear mass and element, e.g. ⁴⁰Ca is double magic, ⁴⁰Ar (no data) is not, so no reason for cross sections to be equal [A. J. Koning et al., 2007] [K.-H. Kampert et al., 2005]
- PEANUT (a module of FLUKA) predictions are different in the same isobar, if data available at least the central GDR peak is reproduced [A. Ferrari et al., 2005]
- Box approximation, e.g. used in [Murase, Beacom 2010] underestimates data and models, insufficient description
- Up to factor two differences in disintegration rates ٠

[D. Boncioli, A. Fedynitch, W. Winter – Sci. Rep. (2017)] see also e.g. [Soriano et al., 1805.00409]

Impact of different models on the nuclear cascade

Disintegration strongly depending on interaction models

[D. Boncioli, A. Fedynitch, W. Winter - Sci. Rep. (2017)]

- PSB disintegration chain weakly describes multi-nucleon emission, only small fragments can be ejected
- TALYS provides much more channels, ejection of p, n, d, t, He-3, He-4
- Systematic offset = 'do not trust unmeasured cross-sections' → cascade will not be populated → ejection composition!

see also e.g. [Alves Batista et al., JCAP 2015] [Pierre Auger collaboration, JCAP 2017]

Relevant energy scales for UHECR interactions with photons

High-energy nucleus + 'low energy' photon = photo-nuclear physics in the MeV – GeV range

Photon energy in

nucleus rest frame

Photo-hadronic (Aγ) interactions

- **QED scale:** e.g. pair-production $A + \gamma \rightarrow A + e^+ + e^ \varepsilon_r > 1 \text{ MeV}$
- Nuclear scale: nuclear photo-disintegration, e.g. $A + \gamma \rightarrow (A - 1) + n$ $\varepsilon_r > 8 \text{ MeV}$

• Mesonic scale: baryonic resonances, photo-meson production (produces neutrinos), e.g. $A + \gamma \rightarrow \tilde{A} + \pi^+ \qquad \varepsilon_r > 140 \text{ MeV}$

 $A + \gamma \rightarrow \tilde{A} + \pi^+$ $\varepsilon_r > 140 \text{ MeV}$ Hadronic scale: hadronic structure becomes relevant for

the interaction $\varepsilon_r > 1 \,\, {\rm GeV}$

TDEs as origin of

UHECRs AND PeV

neutrinos

Other processes

٠

• Beta-decays, pp-interactive emission, spallation, de-ex

[DB, D. Boncioli, C. Lunardini, W. Winter – arXiv:1711.03555]

Photo-meson production dominated objects

A few examples

Cross-section models for photo-meson production

Comparison of different approaches

Superposition model vs. universal curve

Current state-of-the-art photo-meson models: superposition model with individual nucleon interaction

$$\sigma_{A}^{tot}(E) = \frac{Z}{A}\sigma_{p}(E) + \frac{N}{A}\sigma_{n}(E)$$

Remaining nucleus (A-1) reinjected with no mediating de-excitations or decays

• CRpropa uses scaling $\sim A^{2/3}$ for the whole energy range

Instead: universal behaviour for nuclei observed, spline interpolation of data to obtain universal curve

[L. Morejon et al., in preparation]

Impact of photo-meson models on nuclear cascade

Comparison between extended and superposition model

Disintegration chain and ejected composition

- Example: pure nitrogen injected in TDE (zoom in on the low-mass tail of the nuclear cascade shown before)
- Extended model allows for ejection of multi-nucleon fragments
 - More energy for specific channels along the main diagonal
 - Less energy off the main diagonal, some isotopes basically not populated anymore
- Direct impact on neutrino production!

[L. Morejon et al., in preparation]

Glashow resonance: py vs. pp interactions

More realistic models making the difference

Triggering the resonance and flavor composition

• Resonant interaction of an astrophysical electron antineutrino with electron

 $\bar{\nu}_e + e^- \rightarrow W^- \rightarrow \text{hadrons at 6.3 PeV}$

• Origin of the incoming neutrino

$$p + \gamma \to \Delta^{+} \to \begin{cases} \pi^{+} + n & 1/3 \text{ of all cases} \\ \pi^{0} + p & 2/3 \text{ of all cases} \end{cases}$$
$$p + p \to \begin{cases} \pi^{+} + \text{anything} & 1/3 \text{ of all cases} \\ \pi^{-} + \text{anything} & 1/3 \text{ of all cases} \\ \pi^{0} + \text{anything} & 1/3 \text{ of all cases} \end{cases}$$

 $\pi^+ \rightarrow \mu^+ + \nu_\mu ,$ $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

[DB, A. Fedynitch, A. Palladino, T. Weiler, W. Winter – JCAP (2017)]

Glashow resonance: py vs. pp interactions

More realistic models making the difference

More realistic description: pp source

• Pion charge ratio not exactly equal to one, reasonable estimate from hadronic interaction models: average of EPOS-LHC, QGSJet-II-04 and SIBYLL 2.3

Gets even worse with softer injection spectrum

More realistic description: py source

 Multi-pion processes and neutrons from the disintegration of nuclei (if present) lead to contamination by π⁻

 $n + \gamma \to \Delta^0 \to \begin{cases} \pi^- + p & 1/3 \text{ of all cases} \\ \pi^0 + n & 2/3 \text{ of all cases} \end{cases}$

[DB, A. Fedynitch, A. Palladino, T. Weiler, W. Winter – JCAP (2017)]

Summary and conclusions

Neutrinos from UHECR interactions

- Efficient neutrino production requires high radiation densities, where on the other hand UHECRs efficiently disintegrate
 - Nuclear cascade as a measure of UHECR interactions and neutrino production, needs to be triggered for a combined treatment
 - Challenges the hypothesis of a common origin of neutrinos and cosmic rays at the highest energies
- Future measurements and improved theoretical models are essential for a better description of neutrinos from UHECR interactions, as the current data is sparse and the models do not always reproduce it well leading to large uncertainties
- Development of the nuclear cascade and neutrino production strongly depend on the model assumptions, different disintegration chains lead to different ejected compositions and neutrino yields
- Strong implications can be obtained when interactions producing neutrinos are well-understood, as in the case of the Glashow resonance, which with increasing exposure will help constrain the sources

BACKUP

Cross section of different energy scales

And individual contributions to it

[Rachen J. P. 1996 PhD Thesis]

Swift J1644+57: Onset of a relativistic jet

A sun-like star on an eccentric orbit plunges toward the supermassive black hole in the heart of a distant galaxy. 2. Strong tidal forces near the black hole increasingly distort the star. If the star passes too close, it is ripped apart.

- 3. The part of the star facing the black hole streams toward it and forms an accretion disk. The remainder of the star just expands into space.
- 4. Near the black hole, magnetic fields power a narrow jet of particles moving near the speed of light. Viewed head-on, the jet is a brilliant X-ray and radio source.

Credit: NASA/Goddard Space Flight Center/Swift

Glashow resonance: py vs. pp interactions

More realistic models making the difference

Leptonic channel not distinguishable from non-resonant events since energy is carried away by neutrino

Description of models

Nuclear data libraries

What is TALYS?

www.talys.eu

TALYS is software for the simulation of nuclear reactions. Many state-of-the-art nuclear models are included to cover all main reaction mechanisms encountered in light particle-induced nuclear reactions. TALYS provides a complete description of all reaction channels and observables, and is user-friendly.

> ENDF-B-VII.1 18 is an evaluated nuclear data library based on calculations using the GNASH code system. Its photo-nuclear part contains absorption cross-sections a sometimes inclusive emission spectra of neutrons and protons, but no residual cross-sections. Comparisons with data reveal a very good agreement with the measurements.

JENDL/PD-2004 [19] is another evaluated library, based on Lorentz fits at GDR energies and quasideuteron emission above. Elements without $\sigma_{\rm abs}$ measurements are evaluated through branching ratios from pre-quilibrium and evaporation models, together with photo-neutron data. The description of $\sigma_{\rm abs}$ is good for all measured elements.