

LHCb: Recent and upcoming results related to cosmic ray interactions

ISVHECRI 2018, Nagoya, Japan

Hans Dembinski¹ on behalf of the LHCb collaboration

¹Max Planck Institute for Nuclear Physics, Heidelberg

CERN and cosmic rays

SPS (NA61) and LHC cover three orders of magnitude in c.m.s. energy

Collisions at the LHC

Modeling CR interactions

extrapolation to higher energy & different collision systems

- Light hadron production most important
- Measurement accuracy in reference systems ~ 5-10 %
- Model deviation often larger

LHCb and CR physics

LHCb can provide input to cosmic ray physics

- Anti-proton production in pHe collisions Most uncertain component of anti-proton flux measured by AMS-02
- Charmed meson production in pp and pPb in forward direction Charmed mesons in air showers produce neutrino background for IceCube
- Light hadron production in pp and pPb in forward direction Address muon puzzle in air showers, prevents unambiguous inference of <lnA>

Muon Puzzle and <lnA>

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660-678

Cosmic ray observables to test astrophysical theories

Directions

No point sources found

Energy spectrum

- Good accuracy
- Weakly discriminating

Mass composition

- Poor accuracy (theoretical)
- Strongly discriminating

Mass composition **very sensitive** to astrophysical theories of CR origin, but accuracy of <lnA> poor because of **uncertainties in air shower models**

LHCb experiment

Forward spectrometer fully instrumented in $2 < \eta < 5$

- Very good momentum and vertex resolution
 - $\delta p/p < 1 \%$ for $0 GeV/c, <math>\delta x \sim 20 \mu m$ for high p_T tracks
- Good particle identification
 - K: ~90 % efficiency, mis-ID < 5 %
 - μ : ~97 % efficiency, mis-ID ~ 1-3 %
- **Optimal**: μ , p, K⁺⁻, π^{+-} produced inside Vertex Locator
- **Ok**: K⁰_S, Λ⁰, γ, e, π⁰
- Challenging: stable neutral hadrons n, K⁰_L

JINST 3 (2008) S08005 IJMP A 30 (2015) 1530022

HeRSCHeL: forward scintillator

Carvalho Akiba et al. JINST 13 (2018) no.04, P04017

- Forward shower counters with acceptance $5 < |\eta| < 10$
- Better identification of diffractive events, important to identify CEP

Recent LHCb measurements

• pp @ 13 TeV

Many new high-precision results on charm

- Inelastic cross-section: LHCb-PAPER-2018-003, arxiv:1803.10974
- Prompt charm production: JHEP03(**2016**)159
- J/ψ & J/ψ pair production: JHEP10(**2015**)172, JHEP06(**2017**)047
- Central Exclusive Production (CEP) of J/ ψ & ψ (2S): LHCb-CONF-**2016**-007
- Two-particle angular correlation: LHCb-PROC-2017-033
- pPb
 - @ 5 TeV D⁰ & $\psi(2S)$ production: JHEP10(**2017**)090, JHEP03(**2016**)133
 - @ 8.16 TeV
 J/ψ production: Phys. Lett. B 774 (2017) 159
 Two-particle angular correlation: Phys. Lett. B 762 (2016) 473
- Fixed target (SMOG)
 - pHe @ 110 GeV anti-proton spectra: LHCb-CONF-2017-002
 - $\circ \ \ \, pHe @ 86.6 \ \, GeV \& pAr @ 110 \ \, GeV \\ J/\psi, D^0 \ \, production: LHCb-PAPER-$ **2018** $-023 \ (in \ prep.)$

Older measurements @ 7 TeV

- Inelastic cross-section
- Charged particle spectra
- Multiplicities of charged particles
- Ratios of pi, K, p
- Energy flow
 Eur. Phys. J. C (2012) 72:2168
 Eur. Phys. J. C (2013) 73:2421
 Eur. Phys. J. C (2014) 74:2888
 JHEP02(2015)129

p+p collisions at 13 TeV

Inelastic cross-section

- New measurement using 10.7 nb⁻¹ of zero-bias events at 13 TeV
- Total uncertainty 4 % (systematic)
 - Low intrinsic systematic uncertainty of analysis 0.2 %
 - Luminosity 3.9 %
- Excellent agreement with TOTEM and ATLAS results

Prompt charm production

JHEP03(2016)159 JHEP05(2017)074 (erratum)

2D spectra of D^0 , D^+ , D_s^+ , D^{*+} available, also ratios

Good agreement of theory and measurement

Measurement much more accurate (5–10 %) than theory, especially at low p_T

Comparisons with CR models wanted

CEP of J/ ψ and ψ (2S)

LHCb-CONF-2016-007

Central exclusive production

- Diffractive process: $pp \rightarrow pXp$, X = meson
- Fusion of photon and pomeron photon (spin 1) + pomeron (spin 0) = vector meson (spin 1)
- pQCD calculations available
- Probes gluon PDF down to $x = 2 \times 10^{-6}$

Inclusive J/ψ pair production

Probe for double-parton scattering (DPS)

$$\sigma_{\rm DPS} \left(J/\psi \, J/\psi \right) = \frac{1}{2} \frac{\sigma \left(J/\psi \right)^2}{\sigma_{\rm eff}}$$

 $\sigma_{\rm eff}$ thought to be universal for all processes and energies DPS process sensitive to parton structure

- parton transverse profile
- parton correlations

DPS contribution significant in tail of $|\Delta y|$ distribution

Compilation of σ_{eff} measurements

Hans Dembinski | MPIK Heidelberg

Angular correlations

Phys. Lett. B 762 (2016) 473

Take pairs of charged prompt particles, bin by $(\Delta \eta, \Delta \phi)$

Structures in angular correlation plot

- Near-side peak from jets
- Away-side ridge from back-to-back jets
- Near-side ridge from interesting physics
 - Quark gluon plasma
 - Color glass condensate
 - Collective effects (e.g. flow in EPOS)

Near-side ridge in pPb @ 5 TeV

• Clear signal in central collisions

Near-side ridge in pp @ 13 TeV

- Hint of signal in high activity events
- Needs further study with more statistics

p+Pb collisions

Pb

"forward"

1.7 nb⁻¹ at $\sqrt{s_{NN}} = 5$ TeV 14 nb⁻¹ at $\sqrt{s_{NN}} = 8.2$ TeV Probes low x in nuclear PDF

"backward"

p

Heavy-ion physics

p

• Probe Quark Gluon Plasma (QGP)

• Study cold nuclear matter effects, disentangle from QGP effects

Pb

- Study nuclear PDF at low and high x (forward, backward)
- Study absorption and coherent energy loss in nuclear medium

Nuclear modification factor $R_{pA} = \frac{\text{cross-section for pPb}}{A \text{ x cross-section for pp}}$

Superposition model: $R_{pA} = 1$

Prompt J/ψ production

LHCb-PAPER-2017-014

- Up to 50 % suppression in forward direction
- No visible dependence on beam energy
- Parton density models constrained
- Good agreement with Color Glass Condensate model

Also available: double-differential CS Ratio forward/backward

Prompt D⁰ production

J/ψ from b-mesons

p+Gas collisions

gas (He, Ne, Ar)

Runs at $\sqrt{s_{NN}}$ = 69, 87, **110** GeV

SMOG: Gas target

JINST 9 (2014) P12005

System for Measuring Overlap with Gas

- Inject He, Ne, Ar into beam pipe at $\sim 2 \times 10^{-7}$ mbar
- Enabled best luminosity measurement at LHC
- Allows data taking in **fixed target mode**

anti-p production in pHe

Prompt production at $\sqrt{s_{NN}}$ = 110 GeV

LHCb-PROC-2018-001 LHCb-CONF-2017-002

Excellent anti-proton identification (multivariate, uses both RICH detectors)

Precise normalization of cross-section

- Reference: single electron-scattering (p+e⁻_{gas})
- Clear signature, backgrounds charge-symmetric
- Only 6 % uncertainty

Total uncertainty < 10 %

Hans Dembinski | MPIK Heidelberg

anti-p production in pHe

LHCb-PROC-2018-001 LHCb-CONF-2017-002

Data / model predictions

- Simulations with CRMC
 <u>https://web.ikp.kit.edu/rulrich/crmc.html</u>
- EPOS-LHC Too few anti-p by factor 1.5 to 2 Fewer anti-p than EPOS-1.99
- HIJING Best overall agreement

٠

QGSJet-II.04 Good at low (p, p_T) Too many anti-p at high (p, p_T)

J/ψ production in p(He,Ar) LHCb-PAPERin preparation

- Cross-section reported for p+He, luminosity measurement available
- Yields reported for p+Ar; no normalization information, only shape

Cross-section/yield vs. p_T also available + total cross-section for p+He

- Good agreement with interpolation based on PHENIX and HERA-B data
- HELAC-ONIA under-estimates p+He cross-section by factor 1.78 HELAC-ONIA: Shao & Lansberg, EPJC(2017)77: 1

D⁰ production in p(He,Ar)

LHCb-PAPER-2018-023 in preparation

- Cross-section reported for p+He, luminosity measurement available
- Yields reported for p+Ar; no normalization information, only shape

Cross-section/yield vs. p_T also available + total cross-section for p+He

- Good agreement with interpolation based on PHENIX and HERA-B data
- HELAC-ONIA under-estimates p+He cross-section by factor 1.44 HELAC-ONIA: Shao & Lansberg, EPJC(2017)77: 1

Intrinsic charm in nucleon? LHCb-PAPER-2018-023 in preparation

- D⁰ cross-section provides first test of intrinsic charm content in the nucleon
- No sign of strong intrinsic charm contribution to nuclear PDF

First bin probes high x region of nuclear PDF, where intrinsic charm contributes

Summary & Outlook

- 🗲 🔵 🔹 QCD with p+p collisions @ 13 TeV
 - Charm production: J/ψ , D^0 , D^+ , D_s
 - Parton PDF: J/ ψ pairs, CEP of J/ ψ and ψ (2S)
 - Collective effects: Two-particle angular correlations
 - **Prospect**s
 - Precision measurement of π, K, p spectra
 - Precision measurement of e.m., hadron energy flow
- Heavy-ion
 - Heavy-ion physics with p+Pb collisions @ 5 TeV and 8.16 TeV
 - \circ Cold nuclear matter effects (test of superposition assumption): J/ ψ , D⁰
 - Collective effects: Two-particle angular correlations
 - Light-ion physics with p+(He,Ar) collisions @ 86.6 and 110 GeV
 - o Charm production and probe of nuclear PDF at high-x: J/ψ , D^0
 - Precision measurement of anti-proton production for AMS-02 and PAMELA
 - Prospects
 - Measure non-prompt contribution (20-30 %) to anti-proton yield from hyperon decays
 - Measurement of π, K spectra to constrain e⁺ production
 - Scaling violation? Repeat analysis with p+He(gas) collisions @ 86.6 GeV

LHCb is excellent for studying CR physics. Lots of activity, more to come.

Acknowledgments

 Lead nucleus graphic from Inductiveload - Public Domain: <u>https://commons.wikimedia.org/w/index.php?curid=2858666</u>